Let mass, height, velocity, time are respectively represented by m, v, s , t.
So mg = 98N where g = 9.8 m/s²
So m = 98/9.8 = 10 kg
Initial velocity v0 = 82 m/s
(A)
A model of the state of the cannon ball is given by
"m\\frac{dv}{dt}" = - mg - kv
=> m"\\frac{dv}{dt}" = -k(v + "\\frac{mg}{k}" )
=> "\\frac{dv}{(v+\\frac{mg}{k})}" = "-\\frac{k}{m} dt"
Integrating,
"\\int" "\\frac{dv}{(v+\\frac{mg}{k})}" = "\\int" "-\\frac{k}{m} dt"
=> ln"(v+\\frac{mg}{k})" = "-\\frac{k}{m}t" + C
By initial condition, when t=0, v= 82
So ln"(82+\\frac{mg}{k})" = C
So ln"(v+\\frac{mg}{k})" = "-\\frac{k}{m}t" + ln"(82+\\frac{mg}{k})"
=> ln"(v+\\frac{mg}{k})" - ln"(82+\\frac{mg}{k})" = "-\\frac{k}{m}t"
=> ln "\\frac{(v+\\frac{mg}{k})}{(82+\\frac{mg}{k})}" = "-\\frac{k}{m}t"
=> "\\frac{(v+\\frac{mg}{k})}{(82+\\frac{mg}{k})}" = "e^{-\\frac{k}{m}t}"
=> "(v+\\frac{mg}{k})" = "(82+\\frac{mg}{k})" "e^{-\\frac{k}{m}t}"
=> "v = -\\frac{mg}{k}" + "(82+\\frac{mg}{k})" "e^{-\\frac{k}{m}t}"
Putting the values of m,k,g we get
"\\frac{mg}{k} = \\frac{9.8*10}{0.0025}=39200"
"\\frac{k}{m} = 0.00025"
So expression for velocity is
v(t) = -39200+39282"e^{-0.00025t}"
(B)
From part - A we can write
"\\frac{ds}{dt}" = -39200+39282"e^{-0.00025t}"
=> ds = (-39200 + 39282"e^{-0.00025t}" )dt
"\\int" ds = "\\int"(-39200 + 39282"e^{-0.00025t}" )dt
=> s = -39200t - "\\frac{39282}{0.00025}" "e^{-0.00025t}" + C1
By initial condition, s = 0 when t=0
C1 = "\\frac{39282}{0.00025} = 157128000"
So s = 157128000 - 39200t - 157128000"e^{-0.00025t}"
So height of the cannon ball is
s(t)=157128000(1- "e^{-0.00025t}" ) - 39200t
(C)
For maximum height ",\\frac{ds}{dt} = v = 0"
=> -39200 + 39282"e^{-0.00025t} = 0"
=> "e^{-0.00025t} = \\frac{39200}{39282}"
=> -0.00025t = ln("\\frac{39200}{39282}" )
=> -0.00025t = - 0.00208965189
=> t = "\\frac{0.00208965189}{0.00025}" = 8.35860756
Putting this value of t in s(t) we get maximum height.
So maximum height is
157128000(1 - "e^{-0.00025*8.35860756}" ) - 39200*8.35860756
= 328000-327657.416
= 342.584
So maximum height is 342.584 m
Comments
Leave a comment