a)
mdtdv = mg - kv where k>0 is a constant
mdtdv = - ( kv - mg)
dtdv = - mk (v - kmg )
=> v−kmgdv = - mk dt
Integrating
∫ v−kmgdv = -mk ∫ dt
=> ln(v-kmg ) = -mk t + C, C is integration constant
By initial condition, when t = 0, v = v0
So C = ln(v0 - kmg )
Therefore
ln(v - kmg ) = - mk t + ln(v0 - kmg )
=> ln (v0−kmgv−kmg) = - mk t
=> (v0−kmgv−kmg) = e−mkt
=> v−kmg = (v0−kmg) e−mkt
=> v = kmg + (v0−kmg) e−mkt
So v(t)= kmg + (v0−kmg) e−mkt
b)
For terminal velocity t→∞
So terminal velocity =
limt→∞v(t)
= limt→∞ [kmg + (v0−kmg)e−mkt ]
= kmg because e−mkt →0 as t→∞
So terminal velocity is kmg
c)
dtds = kmg + (v0−kmg) e−mkt
∫ ds = ∫ [kmg + (v0−kmg) e−mkt ]dt
=> s = kmgt - km (v0−kmg) e−mkt + D,
D is integration constant
From initial condition, s = 0, when t = 0
So D = km (v0−kmg)
s = kmgt + km (v0−kmg)(1−e−mkt)
s(t) =
kmgt + km (v0- kmg )(1- e−mkt )
Comments