The locus of the complex number arg(z* + i√3) - π/4 is equal to?
"\\text{Given $\\rm{arg }(z + i \\sqrt{3}) = \\frac\\pi4$}\\\\\n\\text{Note that : $\\rm{arg }(z + i \\sqrt{3}) = \\rm{arg }(x + i(y+ \\sqrt{3})) = \\tan^{-1} \\frac{y + \\sqrt3}{x} = \\frac\\pi4$} \\\\\n\\implies \\frac{y + \\sqrt3}{x} = \\tan \\frac\\pi4 = 1 \\\\\n\\implies x = y + \\sqrt3 \\Leftrightarrow y = x - \\sqrt3 \\\\\n\\text{$\\therefore$ the locus of the given equation is } y = x - \\sqrt3"
Comments
Leave a comment