Question #223017

The locus of the complex number arg(z* + i√3) - π/4 is equal to?


1
Expert's answer
2021-08-25T09:11:48-0400

Given arg(z+i3)=π4Note that : arg(z+i3)=arg(x+i(y+3))=tan1y+3x=π4    y+3x=tanπ4=1    x=y+3y=x3 the locus of the given equation is y=x3\text{Given $\rm{arg }(z + i \sqrt{3}) = \frac\pi4$}\\ \text{Note that : $\rm{arg }(z + i \sqrt{3}) = \rm{arg }(x + i(y+ \sqrt{3})) = \tan^{-1} \frac{y + \sqrt3}{x} = \frac\pi4$} \\ \implies \frac{y + \sqrt3}{x} = \tan \frac\pi4 = 1 \\ \implies x = y + \sqrt3 \Leftrightarrow y = x - \sqrt3 \\ \text{$\therefore$ the locus of the given equation is } y = x - \sqrt3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS