The locus of the complex number arg(z* + i√3) - π/4 is equal to?
Given arg(z+i3)=π4Note that : arg(z+i3)=arg(x+i(y+3))=tan−1y+3x=π4 ⟹ y+3x=tanπ4=1 ⟹ x=y+3⇔y=x−3∴ the locus of the given equation is y=x−3\text{Given $\rm{arg }(z + i \sqrt{3}) = \frac\pi4$}\\ \text{Note that : $\rm{arg }(z + i \sqrt{3}) = \rm{arg }(x + i(y+ \sqrt{3})) = \tan^{-1} \frac{y + \sqrt3}{x} = \frac\pi4$} \\ \implies \frac{y + \sqrt3}{x} = \tan \frac\pi4 = 1 \\ \implies x = y + \sqrt3 \Leftrightarrow y = x - \sqrt3 \\ \text{$\therefore$ the locus of the given equation is } y = x - \sqrt3Given arg(z+i3)=4πNote that : arg(z+i3)=arg(x+i(y+3))=tan−1xy+3=4π⟹xy+3=tan4π=1⟹x=y+3⇔y=x−3∴ the locus of the given equation is y=x−3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments