Let z1 =-i/1+i,z2 = 1+i/1-i,and z3 = 1/10[2(i-1)1 +(i +√3)3+(1- i)(1-i)].Express z1z3/z2,z1z2/z3,and z1/z3z2 in both polar and standard forms.
"z_3=\\dfrac{1}{10}[2(i-1)(1-i) +(i +\u221a3)^3+(1- i)(1-i)]"
"z_1=-\\dfrac{i}{1+i}=-\\dfrac{i(1-i)}{2}=-\\dfrac{1}{2}-\\dfrac{1}{2}i"
"z_2=\\dfrac{1+i}{1-i}=\\dfrac{(1+i)^2}{2}=i"
"(i+\\sqrt{3})^3=-i-3\\sqrt{3}+9i+3\\sqrt{3}=8i"
"(1-i)(1-i)=1-2i-1=-2i"
"2(i-1)(1-i)=4i"
"z_3=\\dfrac{1}{10}[4i+8i-2i]=i"
"\\dfrac{z_1z_3}{z_2}=\\dfrac{(-\\dfrac{1}{2}-\\dfrac{1}{2}i)i}{i}=-\\dfrac{1}{2}-\\dfrac{1}{2}i"
"=\\dfrac{\\sqrt{2}}{2}(\\cos(-\\dfrac{3\\pi}{4})+i\\sin(-\\dfrac{3\\pi}{4}))"
"=\\dfrac{\\sqrt{2}}{2}(\\cos(-\\dfrac{3\\pi}{4})+i\\sin(-\\dfrac{3\\pi}{4}))"
"=\\dfrac{\\sqrt{2}}{2}(\\cos(\\dfrac{\\pi}{4})+i\\sin(\\dfrac{\\pi}{4}))"
Comments
Leave a comment