We have to find Taylor's expansion of f(z) = log z
f(z)=log(z)=log(1+zโ1)
f(1)=log1=0
fโฒ(z)=z1โ fโฒ(z)=11โ=1
fโฒโฒ(z)=โz21โ fโฒโฒ(1)=โ1
fโฒโฒโฒ(z)=z32ร1โ fโฒโฒโฒ(1)=2
Hence, by Taylor series
f(z)=f(a)+fโฒ(zโa).(zโa)+2!fโฒโฒโฒ(a)(zโa)3โ+.........
Hence,
โนlogz=(zโ1)โ21โ(zโ1)2+31โ(zโ1)3+.........
Comments