Question #169780


Find the Taylor โ€˜s theorem expansion of 

logz=(z-1)-

(๐‘งโˆ’1)

2

2

+

(๐‘งโˆ’1)

3

2

โˆ’ โ‹ฏ, when|๐‘ง โˆ’ 1| < 1.


1
Expert's answer
2021-03-09T05:56:29-0500

We have to find Taylor's expansion of f(z) = log z


f(z)=log(z)=log(1+zโˆ’1)f(z) = log(z) = log(1+z-1)


f(1)=log1=0f(1) = log 1 = 0


fโ€ฒ(z)=1zf'(z) = \dfrac{1}{z} fโ€ฒ(z)=11=1f'(z) = \dfrac{1}{1} = 1


fโ€ฒโ€ฒ(z)=โˆ’1z2f''(z) = -\dfrac{1}{z^2} fโ€ฒโ€ฒ(1)=โˆ’1f''(1) = -1


fโ€ฒโ€ฒโ€ฒ(z)=2ร—1z3f'''(z) = \dfrac{2\times 1}{z^3} fโ€ฒโ€ฒโ€ฒ(1)=2f'''(1) = 2


Hence, by Taylor series


f(z)=f(a)+fโ€ฒ(zโˆ’a).(zโˆ’a)+fโ€ฒโ€ฒโ€ฒ(a)(zโˆ’a)32!+.........f(z) = f(a) + f'(z-a).(z-a) + \dfrac{f'''(a)(z-a)^3}{2!} +.........


Hence,


โ€…โ€ŠโŸนโ€…โ€Šlogz=(zโˆ’1)โˆ’12(zโˆ’1)2+13(zโˆ’1)3+.........\implies logz = (z -1) - \dfrac{1}{2}(z -1)^2 + \dfrac{1}{3}(z -1)^3 + .........


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS