Given: π§ = 6 + 7π
Calculate the following:
1) π§-4
2) π§1/3, graph the roots.
3) ln π§ , for π = 1, 3, 5 & 7
4) π(π§) = π§π§Μ β π§Μ π + 5π, and check your answer using π§ = π₯ + πy
1) "z=6+7i\\Rightarrow z^{-1}=\\frac{1}{6+7i}=\\frac{6-7i}{85}." Hence "z^{-4}=\\frac{(6-7i)^4}{85^4}=\\frac{-6827+i2184}{85^4}."
2) "z=\\sqrt{85}(\\frac{6}{\\sqrt{85}}+i\\frac{7}{\\sqrt{85}})." Hence, "z=re^{i\\theta}" where "r=\\sqrt{85}, cos \\ \\theta=\\frac{6}{\\sqrt{85}}, sin \\ \\theta =\\frac{7}{\\sqrt{85}}." Hence "z^{1\/3}=r^{1\/3}e^{i\\theta\/3}, r^{1\/3}e^{i(\\theta\/3+2\\pi\/3)}, r^{1\/3}e^{i(\\theta\/3+4\\pi\/3)}." In other words, "z^{1\/3}= \\xi\\ or\\ \\xi\\omega \\ or\\ \\xi \\omega^2" where "\\xi=r^{1\/3}e^{i\\theta\/3} ." (Diagram is attached below) Here "\\omega" denotes complex cube root of unity.
3) "ln (z)= ln |z|+i\\theta+i2\\pi n= ln \\sqrt{85} +i\\theta+i2\\pi n." Now we put "n=1,3,5,7." to get, "ln (z)= ln \\sqrt{85} +i\\theta+i2\\pi , ln \\sqrt{85} +i\\theta+i6\\pi n, ln \\sqrt{85} +i\\theta+i10\\pi n, ln \\sqrt{85} +i\\theta+i14\\pi n."4) "f(z)=(6+7i)(6-7i)-(6-7i)i+5i=78-i."
Verification: "z\\overline{z}=(x+iy)(x-iy)=x^2+y^2." Also "i\\overline{z}=ix-y." Hence, "f(z)=x^2+y^2-ix-y+5i=x^2+y^2+y+i(5-x)." Hence "f(6+7i)=6^2+7^2-7+i(5-6)=" "78-i."
Comments
Leave a comment