Gradient of velocity which is a second rank tensor is
"L^T=\\vec\\nabla \\vec V=\\begin{bmatrix}\n \\cfrac{dV_x}{dx} & \\cfrac{dV_x}{dy} \\\\\n \\cfrac{dV_y}{dx} & \\cfrac{dV_y}{dy}\n\\end{bmatrix}""L^T=\\begin{bmatrix}\n 30x^2 & 0 \\\\\n -24x^2y & -8x^3\n\\end{bmatrix}"
Taking Its transpose
"L=\\begin{bmatrix}\n 30x^2 & -24x^2y \\\\\n 0 & -8x^3\n\\end{bmatrix}"Now strain rate tensor:
"E=\\cfrac{L+L^T}{2}\\\\\nE=\\cfrac{1}{2}\\begin{bmatrix}\n 60x^2 & -24x^2y \\\\\n -24x^2y & -16x^3\n\\end{bmatrix}"where, off-diagonal terms represent shear strain rate.
Now Spin Tensor:
"W=\\cfrac{L-L^T}{2}\\\\\nW=\\cfrac{1}{2}\\begin{bmatrix}\n 0 & -24x^2y \\\\\n 24x^2y & 0\n\\end{bmatrix}"Since off-diagonal term in spin tensor are non zero hence flow is rotational.
Comments
Leave a comment