If v → \overrightarrow{v} v denotes the flow velocity, then for a velocity potential function Φ \Phi Φ , v → \overrightarrow{v} v can be represented as the gradient of a scalar function Φ \Phi Φ :
v → = ∇ Φ = ∂ Φ ∂ x i + ∂ Φ ∂ y j + ∂ Φ ∂ z k . {\displaystyle \overrightarrow{v} =\nabla \Phi \ ={\frac {\partial \Phi }{\partial x}}\mathbf {i} +{\frac {\partial \Phi }{\partial y}}\mathbf {j} +{\frac {\partial \Phi }{\partial z}}\mathbf {k} \,.} v = ∇Φ = ∂ x ∂ Φ i + ∂ y ∂ Φ j + ∂ z ∂ Φ k .
In our case, ∂ Φ ∂ x = u = a y sin x y , ∂ Φ ∂ y = v = a x sin x y . \frac {\partial \Phi }{\partial x}=u=ay\sin xy,\ \ \frac {\partial \Phi }{\partial y}=v=ax\sin xy. ∂ x ∂ Φ = u = a y sin x y , ∂ y ∂ Φ = v = a x sin x y .
Then Φ ( x , y ) = ∫ a y sin x y d x = − a cos x y + C ( y ) \Phi(x,y)=\int ay\sin xy dx=-a\cos xy+C(y) Φ ( x , y ) = ∫ a y sin x y d x = − a cos x y + C ( y ) , and therefore,
∂ Φ ∂ y = a x sin x y + C ′ ( y ) \frac {\partial \Phi }{\partial y}=ax\sin xy+C'(y) ∂ y ∂ Φ = a x sin x y + C ′ ( y ) .
It follows that a x sin x y + C ′ ( y ) = a x sin x y ax\sin xy+C'(y)=ax\sin xy a x sin x y + C ′ ( y ) = a x sin x y , and consequently, C ′ ( y ) = 0 C'(y)=0 C ′ ( y ) = 0 . Then C ( y ) = C C(y)=C C ( y ) = C , and we conclude that
Φ ( x , y ) = − a cos x y + C . \Phi(x,y)=-a\cos xy+C. Φ ( x , y ) = − a cos x y + C .
Comments