Solution:
According the the Euler's theorem we
aφ(n) "\\equiv" 1 (mod n)
It is given the "\\phi"(100)= 40
aφ(100) "\\equiv" 1 (mod 100)
a40 "\\equiv" 1(mod 100)
(3333333333)40 "\\equiv" 1(mod 100) ------- (1)
Now lets apply division algorithm on 7777777777 and 40
7777777777 = 40(194444444) + 17
Hence it follows
(3333333333)7777777777 "\\equiv" (333333333340) 194444444 x (3333333333)17
"\\equiv" (1)194444444 x (3333333333)17(mod 100)
"\\equiv" 3317
Now last two digits of
331 = 33
332 = 89
334 = 21
338 = 41
3316 = 81
So 3317 = 331 x 3316
"\\equiv" 33 x 81
"\\equiv" 73 is the last two digits of the 3317
Answer is 73
Comments
Leave a comment