Proof Of a problem of distinct prime numbers
We need to prove "p^{q -1} + q^ {p-1} \\equiv" 1 "mod \\space {(pq)}"
Solution:
Since p and q are different prime numbers, their greatest common divisor = 1
means (p, q) = 1
Here, we can Apply Fermat's little theorem, then
"p^{q -1} \\equiv 1""\\space mod \\space {(q)}" and "q^{p -1} \\equiv 1 \\space mod \\space {(p)}"
We know "p^{q -1} \\equiv 0 \\space mod {(p)}" and "q^{p -1} \\equiv 0 \\space mod {(q)}"
Now we can combine "p^{q -1} \\equiv 1 \\space mod {(q)} \\space and \\space""q^{p -1} \\equiv 0 \\space mod{(q)}"
We get, "p^{q -1} + q^ {p-1} \\equiv 1 \\space (mod \\space q)"
In the same way, we can also combine
"q^{p -1} = 1 \\space mod {(p)} \\space and \\space p^{q -1} = 0 \\space (mod\\space p)"
"q^{p -1} + p^ {q-1} \\equiv 1 \\space (mod \\space q)"
distinct prime numbers p and q both divides "p^{q -1} + q^ {p-1} - 1"
and also pq divides "p^{q -1} + q^ {p-1} - 1"
So, "p^{q -1} + q^ {p-1} - 1 \\equiv 0 (mod \\space pq)"
"p^{q -1} + q^ {p-1} \\equiv 1 \\space (mod \\space pq)"
Answer: "p^{q -1} + q^ {p-1} \\equiv 1 \\space (mod \\space pq)"
Comments
Leave a comment