If the given system has a solution, then
"x \u2261 b_1\\ mod\\ m_1,\\ x \u2261 b_2\\ mod\\ m_2,"
therefore
"x=b_1+k_1m_1,\\ x=b_2+k_2m_2" for some integers "k_1\\ and\\ k_2"
"b_1-b_2=k_2m_2-k_1m_1"
"(m_1,m_2)" divides "m_1" and "m_2" "\\implies"
"b_1-b_2=k_2l_2(m_1,m_2)-k_1l_1(m_1,m_2)" for some integers "l_1\\ and \\ l_2"
"b_1-b_2=(m_1,m_2)(k_2l_2-k_1l_1)"
this means "(m_1,m_2)|b_1-b_2" .
\
If "(m_1,m_2)|b_1-b_2" ,then
"b_1-b_2=k(m_1,m_2)"
Using Bezout's identity
"(m_1,m_2)=am_1+bm_2" for some integers "a\\ and\\ b"
"b_1-b_2=k(am_1+bm_2)\\implies"
"b_1-kam_1=b_2+kbm_2"
Now, if we set "x=b_1-kam_1=b_2+kbm_2", then "x" is the solution of the given congruence.
If "x_1\\ and \\ x_2" are two solutions of the given congruence, then
"x_1=b_1+k_1m_1,\\ x_2=b_2+k_2m_2\\implies"
"x_1-x_2=b_1-b_2+k_1m_1-k_2m_2"
"(m_1,m_2)" divides "m_1\\ and\\ m_2" and we proved that "(m_1,m_2)|(b_1-b_2)", therefore
"x_1-x_2" is divisible by "(m_1,m_2)"
and the solution is unique modulo "(m_1,m_2)."
\
x ≡ 3 mod 4
x ≡ 1 mod 6
3x ≡ 9 mod 12
2x ≡ 2 mod 12
3x-2x=x≡7 mod 12
x=7 is the solution of the given congruence.
Answer: x=7.
Comments
Leave a comment