Answer to Question #232259 in Combinatorics | Number Theory for paa

Question #232259

Find solution of:

a)"4x" is identical to 3 mod 7

b)"9x" is identical to 11 mod 26

c)"8x" is identical to 6 mod 14

d) "8x" is identical to 6 mod 422


1
Expert's answer
2022-02-21T14:39:48-0500

a)

Since, "4x\u22613(mod 7)"

i.e., "4x\u22123=7k" for "k\u2208I."

"\u21d24x=7k+3"

The values 6 and 13 satisfy this equation (when "k=3" and "k=7" ).

Answer "\\{6, 13\\}"


b)

Since, "9x\u226111(mod 26)"

i.e., "9x\u221211=26k" for "k\u2208I."

"\u21d29x=26k+11"

The values 7 and 33 satisfy this equation (when "k=2" and "k=11" ).

Answer "\\{7, 33\\}"


c)

Since, "8x\u22616(mod 14)"

i.e., "8x\u22126=14k" for "k\u2208I."

"\u21d28x=14k+6"

"\u21d24x=7k+3"

The values 6 and 13 satisfy this equation (when "k=3" and "k=7" ), 

while 8,14 and 16 do not.

Answer "\\{6, 13\\}"


d)

Since, "8x\u22616(mod 422)"

i.e., "8x\u22126=422k" for "k\u2208I."

"\u21d28x=422k+6"

"\u21d24x=211k+3"

The values 159 and 370 satisfy this equation (when "k=3" and "k=7" ), 

Answer "\\{159, 370\\}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS