Question #117137
What is a partially ordered set? Prove that the inclusion relation `is a subset of’ is a partial ordering on the power set of a finite set S.
1
Expert's answer
2020-06-08T19:25:17-0400

A partially ordered set is a set XX  with a partial ordering \leq  on XX . A partial ordering \leq  on XX  is a binary relation on XX  satisfying the following properties:

  • for all x,y,zXx, y, z\in X , if xyx\leq y  and yzy\leq z , then xzx\leq z  (transitivity)
  • for all xXx\in X , xxx\leq x  (reflexivity)
  • for all x,yXx, y\in X , if xyx\leq y  and yxy\leq x , then x=yx=y  (antisymmetry)


Let P(S)\mathcal{P}(S)  denote the power set of SS . Below we show that \subseteq  on P(S)\mathcal{P}(S)  is a partial ordering.

  • Transitivity. Let T0,T1,T2P(S)T_0, T_1, T_2\in \mathcal{P}(S) . Assume that T0T1T_0\subseteq T_1  and T1T2T_1\subseteq T_2 . For all tT0t\in T_0 , tT1t\in T_1  because T0T1T_0\subseteq T_1 , and tT2t\in T_2  because T1T2T_1\subseteq T_2 . Therefore, T0T2T_0\subseteq T_2 .
  • Reflexivity. Let TP(S)T\in \mathcal{P}(S) . For all tTt\in T , tTt\in T  is true. Hence TTT\subseteq T .
  • Antisymmetry. Let T0,T1P(S)T_0, T_1\in \mathcal{P}(S) . Assume that T0T1T_0\subseteq T_1  and T1T0T_1\subseteq T_0 . Then T0=T1T_0=T_1  by the definition of set equality.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS