Given a0=6=6(31−21) and a1=30=6(32−22) .
Also, given the recurrence relation ak=5ak−1−6ak−2 .
Hence, a2=5a1−6a0=150−36=114=6(19)=6(33−23)
a3=5a2−6a1=5×114−6×30=390=6(65)=6(34−24)
a4=5a3−6a2=5×390−6×114=1266=6(211)=6(35−25) and so on.
Hence, Generating function is ak=6(3k+1−2k+1)=18×3k−12×2k.
Comments