Question #117136
Use generating functions to solve the recurrence relation a_k=5a_(k-1)-6a_(k-2) with the initial conditions a_0=6 and a_1=30.
1
Expert's answer
2020-06-12T11:10:21-0400

Given a0=6=6(3121)a_0=6 = 6(3^1-2^1) and a1=30=6(3222)a_1=30 = 6(3^2-2^2) .

Also, given the recurrence relation ak=5ak16ak2a_k=5a_{k-1}-6a_{k-2} .

Hence, a2=5a16a0=15036=114=6(19)=6(3323)a_2 = 5 a_1 - 6a_0 = 150 - 36 = 114 = 6 (19) = 6(3^3-2^3)

a3=5a26a1=5×1146×30=390=6(65)=6(3424)a_3 = 5a_2 - 6a_1 = 5 \times 114 - 6\times 30 = 390 = 6(65) = 6(3^4-2^4)

a4=5a36a2=5×3906×114=1266=6(211)=6(3525)a_4 = 5a_3 - 6a_2 = 5 \times 390 - 6\times 114 = 1266 = 6(211) = 6(3^5-2^5) and so on.

Hence, Generating function is ak=6(3k+12k+1)=18×3k12×2ka_k = 6 (3^{k+1}-2^{k+1})= 18\times 3^k−12 \times 2^k.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS