Given "a_0=6 = 6(3^1-2^1)" and "a_1=30 = 6(3^2-2^2)" .
Also, given the recurrence relation "a_k=5a_{k-1}-6a_{k-2}" .
Hence, "a_2 = 5 a_1 - 6a_0 = 150 - 36 = 114 = 6 (19) = 6(3^3-2^3)"
"a_3 = 5a_2 - 6a_1 = 5 \\times 114 - 6\\times 30 = 390 = 6(65) = 6(3^4-2^4)"
"a_4 = 5a_3 - 6a_2 = 5 \\times 390 - 6\\times 114 = 1266 = 6(211) = 6(3^5-2^5)" and so on.
Hence, Generating function is "a_k = 6 (3^{k+1}-2^{k+1})= 18\\times 3^k\u221212 \\times 2^k".
Comments
Leave a comment