Solution.
an=−3an−1−3an−2−an−3,a0=5,a1=−9,a2=15;
Let an=r3,an−1=r2,an−2=r,an−3=1,then
r3=−3r2−3r−1;
r3+3r2+3r+1=0;
(r+1)3=0;
r+1=0;
r=−1;
an=α1rn+α2nrn+…+αknk−1rn;
So r=-1, then an=α1(−1)n+α2n(−1)n+α3n2(−1)n;
Substitute the value and find α1,α2,α3:
5=α1(−1)0,α1=5;
−9=α1(−1)1+α2(−1)1+α3(−1)1=−α1−α2−α3;
15=α1(−1)2+α2⋅2⋅(−1)2+α3⋅4⋅(−1)2=α1+2α2+4α3;
−9=−5−α2−α3; | ⋅2
15=5+2α2+4α3;
−18=−10−2α2−2α3;
15=5+2α2+4α3;
____________________________
−3=−5+2α3;
2=2α3;
α3=1;
15=5+2α2+4;
6=2α2;
α2=3;
an=5(−1)n+3n(−1)n+1n2(−1)n=(−1)n(5+3n+n2);
Answer: an=(−1)n(5+3n+n2).
Comments