Question #117130
Solve the recurrence relation a_n=-3a_(n-1)-3a_(n-2)-a_(n-3) with a_0=5,a_1=-9,and a_2=15.
1
Expert's answer
2020-06-02T19:49:56-0400

Solution.

an=3an13an2an3,a0=5,a1=9,a2=15;a_n=-3a_{n-1}-3a_{n-2}-a_{n-3}, a_0=5, a_1=-9, a_2=15;

Let an=r3,an1=r2,an2=r,an3=1,a_n=r^3, a_{n-1}=r^2, a_{n-2}=r, a_{n-3}=1,then

r3=3r23r1;r^3=-3r^2-3r-1;

r3+3r2+3r+1=0r^3+3r^2+3r+1=0;

(r+1)3=0;(r+1)^3=0;

r+1=0;r+1=0;

r=1;r=-1;

an=α1rn+α2nrn++αknk1rn;a_n=\alpha_1r^n+\alpha_2nr^n+ … +\alpha_kn^k-1r^n;

So r=-1, then an=α1(1)n+α2n(1)n+α3n2(1)n;a_n=\alpha_1(-1)^n+\alpha_2n(-1)^n+\alpha_3n^2(-1)^n;

Substitute the value and find α1,α2,α3:\alpha_1,\alpha_2,\alpha_3:

5=α1(1)0,α1=5;5=\alpha_1(-1)^0, \alpha_1=5;

9=α1(1)1+α2(1)1+α3(1)1=α1α2α3;-9=\alpha_1(-1)^1+\alpha_2(-1)^1+\alpha_3(-1)^1=-\alpha_1-\alpha_2-\alpha_3;

15=α1(1)2+α22(1)2+α34(1)2=α1+2α2+4α3;15=\alpha_1(-1)^2+\alpha_2\sdot2\sdot(-1)^2+\alpha_3\sdot4\sdot(-1)^2=\alpha_1+2\alpha_2+4\alpha_3;

9=5α2α3;-9=-5-\alpha_2-\alpha_3; | 2\sdot2

15=5+2α2+4α3;15=5+2\alpha_2+4\alpha_3;

18=102α22α3;-18=-10-2\alpha_2-2\alpha_3;

15=5+2α2+4α3;15=5+2\alpha_2+4\alpha_3;

____________________________

3=5+2α3;-3=-5+2\alpha_3;

2=2α3;2=2\alpha_3;

α3=1;\alpha_3=1;

15=5+2α2+4;15=5+2\alpha_2+4;

6=2α2;6=2\alpha_2;

α2=3;\alpha_2=3;

an=5(1)n+3n(1)n+1n2(1)n=(1)n(5+3n+n2);a_n=5(-1)^n+3n(-1)^n+1n^2(-1)^n=(-1)^n(5+3n+n^2);

Answer: an=(1)n(5+3n+n2).a_n=(-1)^n(5+3n+n^2).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS