Area of a circle of radius r
S=πr2=πr2(t), where t is timerate is the plate's area increasing
dtdS=2πr(t)r′(t)=2π⋅50⋅0.01=π⋅100⋅0.01=πcm2/min 2. Radius of the tank at height h is
r(h)=h⋅2410 volume of water in the tank, when depth is h is
V=3πr2h=3πr(h(t))2h(t)=3π(h(t)⋅2410)2h(t)=3π(125)2h3(t)
water volume increase rate is
dtdV=(3π(125)2h3(t))′=3π(125)2⋅3h2(t)h′(t)=π(125)2h2(t)h′(t) we have
π(125)2162h′(t)=20
depth increase rate is
h′(t)=π5216220⋅122=20π9ft/min Answer:
1)
πcm2/min 2)
20π9ft/min
Comments