Find the equations of tangent line and normal lines of parabola y= 2x+ x squared at point (1,3).
y=2x+x2, (1,3)y′=2+2x, y′(1)=2+2∗1=4. Tangent line:
y=y0′(x−x0)+y0
y=4(x−1)+3
y=4x−1. Normal line:
y=−y0′1(x−x0)+y0
y=−41(x−1)+3
y=4−x+13.
Find all the values of x at which the tangent line to the curve y=1/ x + 4 passes through the origin.
y=x+41, y′=−(x+4)21
y=y0′(x−x0)+y0
y=y0′x+(−y0′x0+y0) line passes through the origin => −y0′x0+y0=0
−(x0+4)21∗(−x0)+x0+41=0
(x0+4)2x0+(x0+4)2x0+4=0
(x0+4)22x0+4=0
2x0+4=0 and x0+4=0
x0=−2. Answer:
1) Tangent line y=4x−1, normal line y=4−x+13.
2) x=-2.
Comments