Question #92543
Find the equations of tangent line and normal lines of parabola y= 2x+ x squared at point (1,3).

Find all the values of x at which the tangent line to the curve y=1/ x + 4 passes through the origin.
1
Expert's answer
2019-08-12T09:30:25-0400

Find the equations of tangent line and normal lines of parabola y= 2x+ x squared at point (1,3).


y=2x+x2,   (1,3)y=2x+x^2, \space \space \space (1,3)y=2+2x,   y(1)=2+21=4.y'=2+2x, \space \space \space y'(1)=2+2*1=4.

Tangent line:

y=y0(xx0)+y0y=y'_0(x-x_0)+y_0

y=4(x1)+3y=4(x-1)+3

y=4x1.y=4x-1.

Normal line:

y=1y0(xx0)+y0y=-\frac{1}{y'_0}(x-x_0)+y_0

y=14(x1)+3y=-\frac{1}{4}(x-1)+3

y=x+134.y=\frac{-x+13}{4}.


Find all the values of x at which the tangent line to the curve y=1/ x + 4 passes through the origin.


y=1x+4,  y=1(x+4)2y=\frac 1 {x+4}, \space\space y'=-\frac 1 {(x+4)^2}

y=y0(xx0)+y0y=y'_0(x-x_0)+y_0

y=y0x+(y0x0+y0)y=y'_0x+(-y'_0x_0+y_0)

line passes through the origin => y0x0+y0=0-y'_0x_0+y_0=0


1(x0+4)2(x0)+1x0+4=0-\frac 1 {(x_0+4)^2}*(-x_0)+\frac 1 {x_0+4}=0

x0(x0+4)2+x0+4(x0+4)2=0\frac {x_0} {(x_0+4)^2}+\frac {x_0+4} {(x_0+4)^2}=0

2x0+4(x0+4)2=0\frac {2x_0+4} {(x_0+4)^2}=0

2x0+4=0 and x0+402x_0+4=0 \space and \space x_0+4\not=0

x0=2.x_0=-2.

Answer:

1) Tangent line y=4x1,y=4x-1, normal line y=x+134.y=\frac{-x+13}{4}.

2) x=-2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS