Question #92518
Find the derivative of f(x) = x squared - 4 by definition

y' = lim f( x+h) - f(x) / h
h approaching 0
1
Expert's answer
2019-08-12T10:41:19-0400

Find the derivative of f(x) by definition

f(x)=x24f(x)=x^2-4y=limh0f(x+h)f(x)hy'=\lim_{h\to0} \cfrac{f(x+h)-f(x)}{h}

Solution:

f(x)=limh0(x+h)24x2+4hf'(x)=\lim_{h\to0}\cfrac{(x+h)^2-4-x^2+4}{h}    f(x)=limh0x2+2xh+h2x2h\iff f'(x)=\lim_{h\to0}\cfrac{x^2+2xh+h^2-x^2}{h}    f(x)=limh02xh+h2h\iff f'(x)=\lim_{h\to0}\cfrac{2xh+h^2}{h}    f(x)=limh0h(2x+h)h\iff f'(x)=\lim_{h\to0}\cfrac{h(2x+h)}{h}    f(x)=limh0(2x+h)\iff f'(x)=\lim_{h\to0}(2x+h)    f(x)=2x\iff f'(x)=2x

Answer:

f(x)=2xf'(x)=2x

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS