Question #91395
Q. choose the correct option.
Q. Let H(x)=∫_a^x▒f(t)dt, for a≤x≤b,then which of the following is true?
(i) H may not be continuous on [a,b]
(ii) f is continuous at c∈[a,b],then H is differentiable at c.
(iii) H is continuous on [a,b].
a.(i) only
b.(i) and (ii) only
c.(ii) and (iii) only.
d.(iii) only
1
Expert's answer
2019-07-11T09:30:40-0400

The correct answer is b) (i) and (ii) only.

I) If f is not integrable on [a, b] (for example, if f is a Dirichlet function), then H will not be continuous on [a, b]. A Dirichlet function is not Riemann integrable (the upper limit sum=1 and the lower limit sum=0), hence in this case axf(t)dt\int_{a}^{x}f(t)dt doesn't exist.


II) If f is continuous at c∈[a, b], then

H(c+h)H(c)h=1h(ac+hf(t)dtacf(t)dt)=1hcc+hf(t)dt\frac{H(c+h)-H(c)}{h}=\frac{1}{h}\left(\int\limits_a^{c+h}f(t)dt-\int\limits_a^{c}f(t)dt\right)=\frac{1}{h}\int\limits_{c}^{c+h}f(t)dt

Assuming that


cc+hf(c)dt=hf(c)\int\limits_{c}^{c+h}f(c)dt=hf(c)

We will have

H(c+h)H(c)hf(c)=1hcc+hf(t)dtf(c)=1hcc+h(f(t)f(c))dt\left|\frac{H(c+h)-H(c)}{h}-f(c)\right|=\left|\frac{1}{h}\int\limits_{c}^{c+h}f(t)dt-f(c)\right|=\left|\frac{1}{h}\int\limits_{c}^{c+h}(f(t)-f(c))dt\right|

Since f is continuous at c

limtc(f(t)f(c))=0\lim_{t\to c}\left(f(t)-f(c)\right)=0

Therefore

ε>0δ>0,t:tcδ    f(t)f(c)ε\forall\varepsilon>0 \exist \delta>0, \forall t: |t-c|\le\delta \implies |f(t)-f(c)|\le \varepsilon

Hence if

h<δ|h|<\delta

1hcc+h(f(t)f(c))dt1hcc+hεdt=1hεh=ε\left|\frac{1}{h}\int\limits_{c}^{c+h}(f(t)-f(c))dt\right|\le\left|\frac{1}{h}\right|\left|\int\limits_{c}^{c+h}\varepsilon dt\right|=\left|\frac{1}{h}\right|\varepsilon\left|h\right|=\varepsilon


which means that if h0h \to 0


1hcc+h(f(t)f(c))dt0\left|\frac{1}{h}\int\limits_{c}^{c+h}(f(t)-f(c))dt\right|\to 0

Thus, H is differentiable at c



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS