n→∞liman+a−nan−a−n=?
1) If a> 1
n→∞liman+a−nan−a−n=n→∞liman(1+a−2n)an(1−a−2n)=n→∞lim(1+a−2n)(1−a−2n)=1
The correct answer :b 1
2) If 0<a< 1
n→∞liman+a−nan−a−n=n→∞lim(1/a)n((1/a)−2n+1)(1/a)n((1/a)−2n−1)=n→∞lim((1/a)−2n+1)((1/a)−2n−1)=−1
the correct answer: c -1 .
3) If a=1
n→∞liman+a−nan−a−n=n→∞lim1n+1−n1n−1−n=n→∞lim20=0 the correct answer: a 0
4) If a= - 1
n→∞liman+a−nan−a−n=n→∞lim(−1)n+(−1)−n(−1)n−(−1)−n=n→∞lim(−1)2n+1(−1)2n−1=n→∞lim1+11−1=0
5) If -1<a< 0
n→∞liman+a−nan−a−n=n→∞lim(−1(−a))n+(−1(−a))−n((−1(−a))n−(−1(−a))−n=n→∞lim(1/a)n((1/a)−2n+1)(1/a)n((1/a)−2n−1)
We will introduce a replacement b=-a (0<b< 1 )
n→∞lim(−1(b))n+(−1(b))−n((−1(b))n−(−1(b)−n=n→∞lim(−1)n(bn+b−n)(−1)n(bn−b−n)==n→∞lim(bn+b−n)(bn−b−n)=n→∞lim(1/b)n((1/b)−2n+1)(1/b)n((1/b)−2n−1)=−1 the correct answer: c -1.
6) If a< - 1
If we make b= -a ,( b> 1 ) then we get a sequence
n→∞liman+a−nan−a−n=n→∞lim(−1)nbn(1+b−2n)(−1)nbn(1−b−2n)=n→∞lim(1+b−2n)(1−b−2n)=1
the correct answer :. b 1
7) If a=0
The sequence zn=an+a−nan−a−n is undefined (division by zero).
Comments