Question #91363
Q. Choose the correct answer.
Q. lim┬(n→∞)⁡□((a^n-a^(-n))/(a^n+a^(-n) )) =?
a. 0
b. 1
c. -1
d. ∞
1
Expert's answer
2019-07-10T13:25:17-0400



limnananan+an=?\lim_{n \to \infty }\frac{a^n-a^{-n}} {a^n+a^{-n}}=?

1) If a> 1


limnananan+an=limnan(1a2n)an(1+a2n)=limn(1a2n)(1+a2n)=1\lim_{n \to \infty }\frac{a^n-a^{-n}} {a^n+a^{-n}}=\lim_{n \to \infty }\frac{a^n(1-a^{-2n})} {a^n(1+a^{-2n})}=\lim_{n \to \infty }\frac{(1-a^{-2n})} {(1+a^{-2n})}=1




The correct answer :b 1 


2) If 0<a< 1

limnananan+an=limn(1/a)n((1/a)2n1)(1/a)n((1/a)2n+1)=limn((1/a)2n1)((1/a)2n+1)=1\lim_{n \to \infty }\frac{a^n-a^{-n}} {a^n+a^{-n}}=\lim_{n \to \infty }\frac{(1/a)^n((1/a)^{-2n}-1)} {(1/a)^n((1/a)^{-2n}+1 )}=\lim_{n \to \infty }\frac{((1/a)^{-2n}-1)} {((1/a)^{-2n}+1)}=-1

the correct answer: c -1  .


3) If a=1

limnananan+an=limn1n1n1n+1n=limn02=0\lim_{n \to \infty }\frac{a^n-a^{-n}} {a^n+a^{-n}}=\lim_{n \to \infty }\frac{1^n- 1^{-n}} {1^n+1^{-n}}=\lim_{n \to \infty }\frac{0} {2}=0

the correct answer: a 0


4) If a= - 1

limnananan+an=limn(1)n(1)n(1)n+(1)n=limn(1)2n1(1)2n+1=limn111+1=0\lim_{n \to \infty }\frac{a^n-a^{-n}} {a^n+a^{-n}}=\lim_{n \to \infty }\frac{(-1)^n-(-1) ^{-n}} {(-1)^n+(-1)^{-n}}=\lim_{n \to \infty }\frac{(-1)^{2n}-1} {(-1)^{2n}+1}=\lim_{n \to \infty }\frac{1-1} {1+1}=0

5) If -1<a< 0



limnananan+an=limn((1(a))n(1(a))n(1(a))n+(1(a))n=limn(1/a)n((1/a)2n1)(1/a)n((1/a)2n+1)\lim_{n \to \infty }\frac{a^n-a^{-n}} {a^n+a^{-n}}=\lim_{n \to \infty }\frac{((-1(-a))^n-(-1(-a))^{-n}} {(-1(-a))^n+(-1(-a))^{-n}}=\lim_{n \to \infty }\frac{(1/a)^n((1/a)^{-2n}-1)} {(1/a)^n((1/a)^{-2n}+1 )}

We will introduce a replacement b=-a (0<b< 1 )



limn((1(b))n(1(b)n(1(b))n+(1(b))n=limn(1)n(bnbn)(1)n(bn+bn)==limn(bnbn)(bn+bn)=limn(1/b)n((1/b)2n1)(1/b)n((1/b)2n+1)=1\lim_{n \to \infty }\frac{((-1(b))^n-(-1(b)^{-n}} {(-1(b))^n+(-1(b))^{-n}}=\lim_{n \to \infty }\frac{(-1)^n(b^n-b^{-n})} {(-1)^n(b^n+b^{-n})}=\\ \\ =\lim_{n \to \infty }\frac{(b^n-b^{-n})} {(b^n+b^{-n})}=\lim_{n \to \infty }\frac{(1/b)^n((1/b)^{-2n}-1)} {(1/b)^n((1/b)^{-2n}+1 )} = -1

the correct answer: c -1.


6) If a< - 1


If we make b= -a ,( b> 1 ) then we get a sequence


limnananan+an=limn(1)nbn(1b2n)(1)nbn(1+b2n)=limn(1b2n)(1+b2n)=1\lim_{n \to \infty }\frac{a^n-a^{-n}} {a^n+a^{-n}}=\lim_{n \to \infty }\frac{(-1)^n b^n(1-b^{-2n})} {(-1)^n b^n(1+b^{-2n})}=\lim_{n \to \infty }\frac{(1-b^{-2n})} {(1+b^{-2n})}=1

the correct answer :. b 1 


7) If a=0

The sequence zn=ananan+anz_n=\frac{a^n-a^{-n}} {a^n+a^{-n}} is undefined (division by zero).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS