Question #90995
Differentiate the following:
5ln(2x−2y)−2y^2+5x=0
1
Expert's answer
2019-06-21T11:42:37-0400
F=5ln(2x2y)2y2+5xF=5ln(2x-2y)-2y^2+5x

In calculus, a method called implicit differentiation makes use of the chain rule to differentiate implicitly defined functions

y=FxFyy'=-\frac{F'_x}{F'_y}

take the derivative with respect to x from F

Fx=5ln(2x2y)dx2y2dx+5xdx{F'_x}=5ln(2x-2y)dx-2y^2dx+5xdx



(5ln(2x2y))dx=5(ln(2x2y)dx(5ln(2x-2y))'dx=5(ln(2x-2y)'dx


(u(v))=u(v)v(u(v))'=u'(v)v'

5(ln(2x2y)dx=5(2x2y)dx2x2y=522x2y5(ln(2x-2y)'dx=5\frac{(2x-2y)'dx}{2x-2y}=5\frac{2}{2x-2y}


(2y2)dx=0(2y^2)'dx=0




(5x)dx=5(5x)'dx=5




Fx==522x2y+5{F'_x}==5\frac{2}{2x-2y}+5

take the derivative with respect to y from F

Fy=5ln(2x2y)dy2y2dy+5xdy{F'_y}=5ln(2x-2y)dy-2y^2dy+5xdy

(5ln(2x2y)dy=5(ln(2x2y)dy=5(2x2y)dy2x2y=522x2y(5ln(2x-2y)'dy=5(ln(2x-2y)'dy=5\frac{(2x-2y)'dy}{2x-2y}=5\frac{-2}{2x-2y}


(2y2)dy=4y(2y^2)'dy=4y


(5x)dy=0(5x)'dy=0





Fy==522x2y4y{F'_y}==5\frac{-2}{2x-2y}-4y


Fx=5xy+5=51+xyxy{F'_x}=\frac{5}{x-y}+5=5\frac{1+x-y}{x-y}


Fy=(5xy+4y)=(5+4y(xy)xy){F'_y}=-(\frac{5}{x-y}+4y)=-(\frac{5+4y(x-y)}{x-y})


y=51+xyxy(5+4y(xy)xy)y'=-\frac{5\frac{1+x-y}{x-y}}{-(\frac{5+4y(x-y)}{x-y})}


y=51+xyxy5+4y(xy)xyy'=\frac{5\frac{1+x-y}{x-y}}{\frac{5+4y(x-y)}{x-y}}y=5(1+xy)5+4y(xy)y'=\frac{5(1+x-y)}{5+4y(x-y)}








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS