1. Use the substitution rule. Let
sin x = u \sin x=u sin x = u This implies that
cos x d x = d ( sin x ) = d u \cos xdx=d\left( \sin x \right)=du cos x d x = d ( sin x ) = d u Then
∫ cos x sin x d x = ∫ sin x ⏟ u cos x d x ⏞ d u = ∫ u d u = u 2 2 + c = sin 2 x 2 + c \int \cos x\sin x\,dx=\int \underbrace{\sin x}_{u}\overbrace{\cos x\,dx}^{du}=\int u\,du=\frac{{{u}^{2}}}{2}+c=\frac{{{\sin }^{2}}x}{2}+c ∫ cos x sin x d x = ∫ u sin x cos x d x d u = ∫ u d u = 2 u 2 + c = 2 sin 2 x + c Answer: a.
2. Use the substitution rule. Let
( 6 x + 4 ) = u \left( 6x+4 \right)=u ( 6 x + 4 ) = u Find the differential dx
d u = d ( 6 x + 4 ) = 6 d x = > d x = 1 6 d u du=d\left( 6x+4 \right)=6dx\,\,=>\,\,dx=\frac{1}{6}du d u = d ( 6 x + 4 ) = 6 d x => d x = 6 1 d u Then
∫ cos ( 6 x + 4 ) d x = ∫ cos u ⋅ 1 6 d u \int \cos \left( 6x+4 \right)dx=\int \cos u\cdot \frac{1}{6}du ∫ cos ( 6 x + 4 ) d x = ∫ cos u ⋅ 6 1 d u
= 1 6 ∫ cos u d u = 1 6 sin u + c = 1 6 sin ( 6 x + 4 ) + c =\frac{1}{6}\int \cos udu=\frac{1}{6}\sin u+c=\frac{1}{6}\sin \left( 6x+4 \right)+c = 6 1 ∫ cos u d u = 6 1 sin u + c = 6 1 sin ( 6 x + 4 ) + c Answer: a.
Comments