C(x,y)=ex(32x−16x2−7)+2yex−e2x−y2
i) Let's find extreme points:
∂x∂C(x,y)=ex(32x−16x2−7)+ex(32−32x)+2yex−2e2x=ex(32x−16x2−7+32−32x)+2yex−2e2x=ex(−16x2+25)+2yex−2e2x
∂y∂C(x,y)=2ex−2y
{ex(−16x2+25)+2yex−2e2x=02ex−2y=0
{ex(−16x2+25)+2yex−2e2x=0y=ex
ex(−16x2+25)+2e2x−2e2x=0
ex(−16x2+25)=0
−16x2+25=0
x2=25/16
x1=5/4;x2=−5/4
y1=e5/4;y2=e−5/4
C(5/4,e5/4)=e5/4(32⋅5/4−16(5/4)2−7)+2e5/4e5/4−e5/2−e5/2=e5/4(40−25−7)=8e5/4
Set x2=−5/4;y2=e−5/4 has no meaning as far as number of components can not be negative.
ii) Let's classify obtained extreme point x=5/4;y=e5/4
A=∂x2∂2C(x,y)=ex(−16x2+25)−32xex+2yex−4e2x=ex(−16x2−32x+25)+2yex−4e2x
B=∂x∂y∂2C(x,y)=2ex
E=∂y2∂2C(x,y)=−2
A=e5/4(−16(5/4)2−32⋅5/4+25)+2e5/4e5/4−4e5/2=e5/4(−25−40+25)−2e5/2=−40e5/4−2e5/2
B=2e5/4
E=−2
D=AE−B2=80e5/4+4e5/2−4e5/2=80e5/4
A<0 and D>0, so function C(x,y) has a minimum at x=5/4;y=e5/4.
Finally, we can conclude that Apol can minimize its costs to the level of RM 8e5/4 by the taking of 5/4 components from the x company and e5/4 components from the y company.
Comments