Question #87957
Apol is a company that sells smartphone.it relies on two companies: x and y to help manufacture some components in smartphone. the cost in RM to manufacture some components in the smartphone given by following model,
C (x,y)=e^x (32x-16x^2-7)+2ye^x-e^{2x}-y^2
Based on mathematical model above, find extreme points. Then, analyse the relation between the companies and the cost to produce some components in smartphone by apol
1
Expert's answer
2019-04-12T12:35:19-0400

C(x,y)=ex(32x16x27)+2yexe2xy2C(x,y)=e^x (32x-16x^2-7)+2ye^x-e^{2x}-y^2

i) Let's find extreme points:

C(x,y)x=ex(32x16x27)+ex(3232x)+2yex2e2x=ex(32x16x27+3232x)+2yex2e2x=ex(16x2+25)+2yex2e2x\frac{\partial C(x,y)}{\partial x}=e^x (32x-16x^2-7)+e^x (32-32x)+2ye^x-2e^{2x}=e^x (32x-16x^2-7+32-32x)+2ye^x-2e^{2x}=e^x (-16x^2+25)+2ye^x-2e^{2x}

C(x,y)y=2ex2y\frac{\partial C(x,y)}{ \partial y}=2e^x-2y

{ex(16x2+25)+2yex2e2x=02ex2y=0\begin{cases} e^x (-16x^2+25)+2ye^x-2e^{2x}=0 \\ 2e^x-2y=0 \end{cases}

{ex(16x2+25)+2yex2e2x=0y=ex\begin{cases} e^x (-16x^2+25)+2ye^x-2e^{2x}=0 \\ y=e^x \end{cases}

ex(16x2+25)+2e2x2e2x=0e^x (-16x^2+25)+2e^{2x}-2e^{2x}=0

ex(16x2+25)=0e^x (-16x^2+25)=0

16x2+25=0-16x^2+25=0

x2=25/16x^2=25/16

x1=5/4;  x2=5/4x_1=5/4; \; x_2=-5/4

y1=e5/4;  y2=e5/4y_1=e^{5/4}; \; y_2=e^{-5/4}

C(5/4,e5/4)=e5/4(325/416(5/4)27)+2e5/4e5/4e5/2e5/2=e5/4(40257)=8e5/4C(5/4,e^{5/4})=e^{5/4} (32 \cdot 5/4-16(5/4)^2-7)+2e^{5/4}e^{5/4}-e^{5/2}-e^{5/2}=e^{5/4} (40-25-7)=8e^{5/4}

Set x2=5/4;  y2=e5/4x_2​=-5/4; \; y_2=e^{-5/4} has no meaning as far as number of components can not be negative.

ii) Let's classify obtained extreme point x=5/4;  y=e5/4x​=5/4; \; y=e^{5/4}

A=2C(x,y)x2=ex(16x2+25)32xex+2yex4e2x=ex(16x232x+25)+2yex4e2xA=\frac{\partial ^2 C(x,y)}{\partial x^2}=e^x (-16x^2+25)-32xe^x+2ye^x-4e^{2x}=e^x (-16x^2-32x+25)+2ye^x-4e^{2x}

B=2C(x,y)xy=2exB=\frac{\partial ^2 C(x,y)}{\partial x \partial y}=2e^x

E=2C(x,y)y2=2E=\frac{\partial ^2 C(x,y)}{\partial y^2}=-2

A=e5/4(16(5/4)2325/4+25)+2e5/4e5/44e5/2=e5/4(2540+25)2e5/2=40e5/42e5/2A=e^{5/4} (-16(5/4)^2-32 \cdot 5/4+25)+2e^{5/4}e^{5/4}-4e^{5/2}=e^{5/4} (-25-40+25)-2e^{5/2}=-40e^{5/4}-2e^{5/2}

B=2e5/4B=2e^{5/4}

E=2E=-2

D=AEB2=80e5/4+4e5/24e5/2=80e5/4D=AE-B^2=80e^{5/4}+4e^{5/2}-4e^{5/2}=80e^{5/4}

A<0A<0 and D>0D>0, so function C(x,y)C(x,y) has a minimum at x=5/4;  y=e5/4x=5/4; \; y=e^{5/4}.


Finally, we can conclude that Apol can minimize its costs to the level of RM 8e5/48e^{5/4} by the taking of 5/4 components from the x company and e5/4e^{5/4} components from the y company.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS