i)limx→−1x2+3x+21−x2=limx→−1(x+1)(x+2)(1−x)(1+x)=limx→−1x+21−x=−1+21−(−1)=12ii)limx→01+x−1x=limx→0(1+x)−1(1+x+1)x=limx→011+x+1=11+0+1=12i) \lim_{x\to -1}\frac{x^2+3x+2}{1-x^2}=\lim_{x\to -1}\frac{(x+1)(x+2)}{(1-x)(1+x)}=\lim_{x\to -1}\frac{x+2}{1-x}=\frac{-1+2}{1-(-1)}=\frac{1}{2}\\ ii) \lim_{x\to 0}\frac{\sqrt{1+x}-1}{x}=\lim_{x\to 0}\frac{(1+x)-1}{(\sqrt{1+x}+1)x}=\lim_{x\to 0}\frac{1}{\sqrt{1+x}+1}=\frac{1}{\sqrt{1+0}+1}=\frac{1}{2}i)limx→−11−x2x2+3x+2=limx→−1(1−x)(1+x)(x+1)(x+2)=limx→−11−xx+2=1−(−1)−1+2=21ii)limx→0x1+x−1=limx→0(1+x+1)x(1+x)−1=limx→01+x+11=1+0+11=21
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment