Question #87681
a plane leaves the airport on a bearing of 45 degree travelling at 400 mph. the wind is blowing at bearing of 135 degree at the speed of 40mph. what is the actual velocity and direction of the plane?
1
Expert's answer
2019-04-09T11:30:22-0400

va=vp+vw\vec{v_a}=\vec{v_p}+\vec{v_w}

where va\vec{v_a} - vector of the actual velocity of the plane; vp\vec{v_p} - vector of the own velocity of the plane; vw\vec{v_w} - vector of the wind velocity.

va=vax2+vay2v_a=\sqrt{v_{ax}^2+v_{ay}^2}

where vav_a - absolute value of the actual velocity of the plane; vaxv_{ax} - x-component of the va\vec{v_a}; vayv_{ay} - y-component of the va\vec{v_a}.

vaxv_{ax} - the algebraic sum of the x-components of vp\vec{v_p} and vw\vec{v_w}; vayv_{ay} - the algebraic sum of the y-components of vp\vec{v_p} and vw\vec{v_w}.

vax=vpx+vwx=vpcosα+vwcosβv_{ax}=v_{px}+v_{wx}=v_p \cdot \cos{\alpha} + v_w \cdot \cos{\beta}

vay=vpy+vwy=vpsinα+vwsinβv_{ay}=v_{py}+v_{wy}=v_p \cdot \sin{\alpha} + v_w \cdot \sin{\beta}

where vpv_p and vwv_w - absolute values of the own velocity of the plane and wind velocity, respectively; vpxv_{px} and vwxv_{wx} - x-components of the vp\vec{v_p} and vw\vec{v_w}, respectively; vpyv_{py} and vwyv_{wy} - y-components of the vp\vec{v_p} and vw\vec{v_w}​, respectively; α\alpha - angle of the plane rising; β\beta - angle of the wind direction.

vax=400cos45°+40cos135°=400224022254.56  mphv_{ax}=400 \cdot \cos{45 \degree} + 40 \cdot \cos{135 \degree} = 400 \cdot \frac{\sqrt{2}}{2} - 40 \cdot \frac{\sqrt{2}}{2} \approx 254.56 \; mph

vay=400sin45°+40sin135°=40022+4022311.13  mphv_{ay}=400 \cdot \sin{45 \degree} + 40 \cdot \sin{135 \degree} = 400 \cdot \frac{\sqrt{2}}{2} + 40 \cdot \frac{\sqrt{2}}{2} \approx 311.13 \; mph

va=254.562+311.132402.0  mphv_a=\sqrt{254.56^2+311.13^2} \approx 402.0 \; mph

tanγ=vayvax\tan{\gamma}=\frac{v_{ay}}{v_{ax}}

where γ\gamma - angle of the actual direction of the plane.

tanγ=311.13254.561.222\tan{\gamma}=\frac{311.13}{254.56} \approx 1.222

γ50.7°\gamma \approx 50.7 \degree


Answer: actual velocity of the plane is 402.0 mph, actual direction of the plane is 50.7°\degree.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS