Question #348050

A ladder 20 meters long leans against a wall. If the bottom of the ladder is being pushed towards the wall at the rate of 20 m/min, how fast is the top of the ladder moving up the wall when the top of the ladder is 6 meters from the ground?

1
Expert's answer
2022-06-06T16:45:29-0400

Let ABAB  be the ladder, where AB=20m.AB=20 m. Let at time tt  minutes, the end AA  of the ladder be xx  metres from the wall and the end BB  be yy  metres from the ground.



Since, AOBAOB  is a right angled triangle, by Pythagoras theorem.


x2+y2=202x^2+y^2=20^2

Differentiate both sides wth respect to tt


2x(dxdt)+2y(dydt)=02x(\dfrac{dx}{dt})+2y(\dfrac{dy}{dt})=0

Solve for dydt\dfrac{dy}{dt}


dydt=xy(dydt)\dfrac{dy}{dt}=-\dfrac{x}{y}(\dfrac{dy}{dt})

Given dxdt=20m/min,y=6m.\dfrac{dx}{dt}=-20m/min, y=6m.

Substitute


x=20262=291x=\sqrt{20^2-6^2}=2\sqrt{91}

dydt=2916(20m/min)=20913m/min\dfrac{dy}{dt}=-\dfrac{2\sqrt{91}}{6}(-20m/min)=\dfrac{20\sqrt{91}}{3}m/min

The top of the ladder is sliding up the wall, at the rate of  20913m/min.\dfrac{20\sqrt{91}}{3}m/min.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS