Find the equivalent functional definition for each of the following and draw a graph of the function.
f(x)= x+|x|.
f(x)=x+∣x∣.f(x)= x+|x|.f(x)=x+∣x∣.
As ∣x∣={xif x≥0,−xif x<0,|x|=\{\begin{matrix} x & \text{if }x\geq0, \\ -x & \text{if }x<0, \end{matrix}∣x∣={x−xif x≥0,if x<0,
we have:
f(x)={x+xif x≥0,x+(−x)if x<0,f(x)=\{\begin{matrix} x+x & \text{if }x\geq0, \\ x+(-x) & \text{if }x<0, \end{matrix}f(x)={x+xx+(−x)if x≥0,if x<0,
f(x)={2xif x≥0,0if x<0,f(x)=\{\begin{matrix} 2x & \text{if }x\geq0, \\ 0 & \text{if }x<0, \end{matrix}f(x)={2x0if x≥0,if x<0,
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments