Question #342333




Use Green’s Theorem to evaluate



∮C(x − 2y2) dx + (y4 + 2xy) dy where C consists of the line segment



from (0, 2) to (0, 4), followed by the curve with parametric equations x = 4 cos t, y = 4 sin t from (0, 4) to (−2, 2√3), then the line segment from (−2, 2√3) to (−1, √3), and finally the curve with parametric equations x = 2 sin t, y = 2 cos t from (−1, √3) to (0, 2).



1
Expert's answer
2022-05-22T10:32:38-0400

Green's Theorem:

C(Ldx+Mdy)=D(MxLy)dxdy\oint_C (Ldx+Mdy)=\iint_D(\frac{\partial M}{\partial x}-\frac{\partial L}{\partial y})dxdy


C((x2y2)dx+(y4+2xy)dy)=\oint_C((x − 2y^2) dx + (y^4 + 2xy) dy)=D(2y+4y)dxdy=D6ydxdy\iint_D(2y+4y)dxdy=\iint_D6ydxdy

Let's move to polar coordinates:

x=rcosϕx=r\cos \phi

y=rsinϕy=r\sin\phi

2r42\leq r\leq 4

π2ϕarctan(232)=2π3\frac{\pi}{2}\leq\phi\leq \arctan(\frac{2\sqrt 3}{-2})=\frac{2\pi}{3}

D6ydxdy=π22π3dϕ246rsinϕrdr=\displaystyle\iint_D6ydxdy=\int_{\frac{\pi}{2}}^{\frac{2\pi}{3}}d\phi\int_2^46r\sin\phi \cdot rdr=π22π3sinϕdϕ246r2dr=(cosϕπ22π3)(2r324)=\int_{\frac{\pi}{2}}^{\frac{2\pi}{3}}\sin\phi d\phi\int_2^46r^2dr=-(\cos\phi|_{\frac{\pi}{2}}^{\frac{2\pi}{3}})\cdot(2r^3|_2^4)=\\=(0.50)2(4323)=56=-(0.5-0)\cdot2(4^3-2^3)=-56

Answer: C((x2y2)dx+(y4+2xy)dy)=56\oint_C((x − 2y^2) dx + (y^4 + 2xy) dy)=-56 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS