Answer to Question #341952 in Calculus for Stella

Question #341952

Find the lengths of the sides of an isosceles triangle with a given perimeter if its area is to be as great as possible.

1
Expert's answer
2022-05-18T17:45:03-0400

Let x,xx, x and yy will be the sides of a isosceles triangle. If P=x+x+y,P=x+x+y, then y=P2x.y=P-2x.

The area SS of the triangle is


S=p(px)(px)(py)S=\sqrt{p(p-x)(p-x)(p-y)}

S=P2(P2x)(P2x)(P2(P2x))S=\sqrt{\dfrac{P}{2}(\dfrac{P}{2}-x)(\dfrac{P}{2}-x)(\dfrac{P}{2}-(P-2x))}

S(x)=P4(P2x)4xP,P4<x<P2S(x)=\dfrac{\sqrt{P}}{4}(P-2x)\sqrt{4x-P}, \dfrac{P}{4}<x<\dfrac{P}{2}

Find the first derivative with respect to xx


S(x)=(P4(P2x)4xP)S'(x)=(\dfrac{\sqrt{P}}{4}(P-2x)\sqrt{4x-P})'

=P4(24xP+4(P2x)24xP)=\dfrac{\sqrt{P}}{4}\big(-2\sqrt{4x-P}+\dfrac{4(P-2x)}{2\sqrt{4x-P}}\big)=P24xP(P4x+P2x)=\dfrac{\sqrt{P}}{2\sqrt{4x-P}}(P-4x+P-2x)

=P(P3x)4xP=\dfrac{\sqrt{P}(P-3x)}{\sqrt{4x-P}}

Find the critical number(s)


S(x)=0=>P(P3x)4xP=0S'(x)=0=>\dfrac{\sqrt{P}(P-3x)}{\sqrt{4x-P}}=0

Since P4<x<P2,\dfrac{P}{4}<x<\dfrac{P}{2}, we have the critical number


x=P3x=\dfrac{P}{3}

If P4<x<P3,S(x)<0,S(x)\dfrac{P}{4}<x<\dfrac{P}{3}, S'(x)<0,S(x) decreases.


If P3<x<P2,S(x)>0,S(x)\dfrac{P}{3}<x<\dfrac{P}{2}, S'(x)>0,S(x) increases.

The funcrion S(x)S(x) has a local maximum at x=P3.x=\dfrac{P}{3}.

Since the function S(x)S(x) has the only extremum for P3<x<P2,\dfrac{P}{3}<x<\dfrac{P}{2}, then

the funcrion S(x)S(x) has the absolute maximum for P3<x<P2\dfrac{P}{3}<x<\dfrac{P}{2} at x=P3.x=\dfrac{P}{3}.


x=P3,y=P3x=\dfrac{P}{3}, y=\dfrac{P}{3}

The equilateral triangle has the maximum area.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment