Use logarithmic differentiation to prove D9: d/dx (1/u^n) =( -n/u^n+1)(du/dx)
"f(x)=\\frac{1}{u^n}"
"\\ln{f(x)}=\\ln{\\frac{1}{u^n}}=-n\\ln u"
"\\frac{d}{dx}\\ln{f(x)}=\\frac{d}{dx}(-n\\ln u)"
"\\frac{1}{f(x)}\\frac{df(x)}{dx}=-n\\frac{1}{u}\\frac{du}{dx}"
"\\frac{df(x)}{dx}=-nf(x)\\frac{1}{u}\\frac{du}{dx}=-n\\frac{1}{u^{n+1}}\\frac{du}{dx}"
"\\frac{d}{dx}\\frac{1}{u^n}=-n\\frac{1}{u^{n+1}}\\frac{du}{dx}"
Comments
Leave a comment