1.Find the area of the region that lies inside the circle r =3sinx and outside the cardioid
r = 1+sinx
I will refer to the curves as r(t) (where t - polar angle) to avoid confusion with Cartesian coordinates. I.e.
circle: r=3sin(t), cardioid r=1+sin(t)
Area in polar coordinates
"1\/2\\int r^2(t)dt"
Draw simple chart
Region area
"A = 1\/2\\int_{t_1}^{t_2} (3\\sin(t))^2 - 1\/2\\int_{t_1}^{t_2} (1+\\sin(t))^2dt\\\\\n= \\int_{t_1}^{t_2} 4\\sin^2(t) - \\sin(t) -1\/2 dt"
Find integration bounds as intersections of curves
"3\\sin(t) = 1+ \\sin(t), 0 \\le t \\le 2\\pi\\\\\n\\sin(t) = 1\/2\\\\\nt_1 = \\pi\/6, t_2=5\\pi\/6"
Integrate
"A= \\int_{\\pi\/6}^{5\\pi\/6}4\\sin^2(t) - sin(t)dt - 1\/2dt\\\\\n= \\Big[2t -\\sin(2t) +\\cos(t) - 1\/2t\\Big]_{\\pi\/6}^{5\\pi\/6}\\\\\n= 3\/2(5\\pi\/6 -\\pi\/6) - (\\sin(5\\pi\/3) - \\sin(\\pi\/3)) + (\\cos(5\\pi\/6) - \\cos(\\pi\/6))\\\\\n= \\pi +2\\sin(\\pi\/3) - 2\\cos(\\pi\/6)\\\\ = \\pi + 2\\sqrt{3}\/2 - 2\\sqrt{3}\/2\\\\ = \\pi \\approx 3.1416"
Answer: 3.1416
Comments
Leave a comment