Question #336387

If f(x) = sin¹x, show that(1-x2)f"(x) xf'(x)

1
Expert's answer
2022-05-03T03:00:42-0400
f(x)=sin1xf(x)=\sin ^{-1}x

f(x)=11x2f'(x)=\dfrac{1}{\sqrt{1-x^2}}

f(x)=12(1x2)3(2x)=x(1x2)3/2f''(x)=-\dfrac{1}{2(\sqrt{1-x^2})^3}(-2x)=\dfrac{x}{(1-x^2)^{3/2}}

(1x2)f(x)xf(x)(1-x^2)f''(x)-xf'(x)

=(1x2)(x(1x2)3/2)x(11x2)=(1-x^2)(\dfrac{x}{(1-x^2)^{3/2}})-x(\dfrac{1}{\sqrt{1-x^2}})

=x1x2x1x2=0=\dfrac{x}{\sqrt{1-x^2}}-\dfrac{x}{\sqrt{1-x^2}}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS