If f(x) = sin¹x, show that(1-x2)f"(x) xf'(x)
"f'(x)=\\dfrac{1}{\\sqrt{1-x^2}}"
"f''(x)=-\\dfrac{1}{2(\\sqrt{1-x^2})^3}(-2x)=\\dfrac{x}{(1-x^2)^{3\/2}}"
"(1-x^2)f''(x)-xf'(x)"
"=(1-x^2)(\\dfrac{x}{(1-x^2)^{3\/2}})-x(\\dfrac{1}{\\sqrt{1-x^2}})"
"=\\dfrac{x}{\\sqrt{1-x^2}}-\\dfrac{x}{\\sqrt{1-x^2}}=0"
Comments
Leave a comment