Find the area of region y =17x2/16, y = 9x2/4 and y = 1 - 4x, satisfying x ≤0.
"17x^2+64x-16=0"
"(17x-4)(x+4)=0"
Since "x\\le0," we take "x=-4."
"9x^2+16x-4=0"
"(9x-2)(x+2)=0"
Since "x\\le0," we take "x=-2."
"x=0"
"A=\\displaystyle\\int_{-4}^{-2}(1-4x-\\dfrac{17x^2}{16})dx"
"+\\displaystyle\\int_{-2}^{0}(\\dfrac{9x^2}{4}-\\dfrac{17x^2}{16})dx"
"=[x-2x^2-\\dfrac{17x^3}{48}]\\begin{matrix}\n -2\\\\\n -4\n\\end{matrix}+[\\dfrac{19x^3}{48}]\\begin{matrix}\n 0\\\\\n -2\n\\end{matrix}"
"=-2-8+\\dfrac{17}{6}+4+32-\\dfrac{68}{3}+\\dfrac{19}{6}"
"=\\dfrac{28}{3}({units}^2)"
Area= "\\dfrac{28}{3}" square units.
Comments
Leave a comment