Question #336446

Find the area of region y =17x2/16, y = 9x2/4 and y = 1 - 4x, satisfying x ≤0.


1
Expert's answer
2022-05-03T10:13:08-0400
17x216=14x,x0\dfrac{17x^2}{16}=1-4x, x\le0

17x2+64x16=017x^2+64x-16=0

(17x4)(x+4)=0(17x-4)(x+4)=0

Since x0,x\le0, we take x=4.x=-4.


9x24=14x,x0\dfrac{9x^2}{4}=1-4x, x\le0

9x2+16x4=09x^2+16x-4=0

(9x2)(x+2)=0(9x-2)(x+2)=0

Since x0,x\le0, we take x=2.x=-2.


17x216=9x24\dfrac{17x^2}{16}=\dfrac{9x^2}{4}

x=0x=0

A=42(14x17x216)dxA=\displaystyle\int_{-4}^{-2}(1-4x-\dfrac{17x^2}{16})dx

+20(9x2417x216)dx+\displaystyle\int_{-2}^{0}(\dfrac{9x^2}{4}-\dfrac{17x^2}{16})dx

=[x2x217x348]24+[19x348]02=[x-2x^2-\dfrac{17x^3}{48}]\begin{matrix} -2\\ -4 \end{matrix}+[\dfrac{19x^3}{48}]\begin{matrix} 0\\ -2 \end{matrix}

=28+176+4+32683+196=-2-8+\dfrac{17}{6}+4+32-\dfrac{68}{3}+\dfrac{19}{6}

=283(units2)=\dfrac{28}{3}({units}^2)

Area= 283\dfrac{28}{3} square units.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS