f ′ ( x ) = 6 x 2 + 2 c x + 2 f'(x)=6x^2+2cx+2 f ′ ( x ) = 6 x 2 + 2 c x + 2
f " ( x ) = 12 x + 2 c f"(x)=12x+2c f " ( x ) = 12 x + 2 c
f ′ ( x ) = 0 f'(x)=0 f ′ ( x ) = 0
6 x 2 + 2 c x + 2 = 0 6x^2+2cx+2=0 6 x 2 + 2 c x + 2 = 0
D = 4 c 2 − 48 D=4c^2-48 D = 4 c 2 − 48
x 1 = − 2 c + 4 c 2 − 48 12 x_1=\frac{-2c+\sqrt{4c^2-48}}{12} x 1 = 12 − 2 c + 4 c 2 − 48
x 2 = − 2 c − 4 c 2 − 48 12 x_2=\frac{-2c-\sqrt{4c^2-48}}{12} x 2 = 12 − 2 c − 4 c 2 − 48
12 x ( − 2 c + 4 c 2 − 48 12 ) + 2 c = 0 12x(\frac{-2c+\sqrt{4c^2-48}}{12})+2c=0 12 x ( 12 − 2 c + 4 c 2 − 48 ) + 2 c = 0
− 2 c + 4 c 2 − 48 = − 2 c -2c+\sqrt{4c^2-48}=-2c − 2 c + 4 c 2 − 48 = − 2 c
4 c 2 − 48 = 1 4c^2-48=1 4 c 2 − 48 = 1
c = 49 / 4 = ± 3.5 c=\sqrt{49/4}=\plusmn 3.5 c = 49/4 = ± 3.5
If c=3.5
f ′ ( x ) = 6 x 2 + 7 x + 2 = 0 f'(x)=6x^2+7x+2=0 f ′ ( x ) = 6 x 2 + 7 x + 2 = 0
D = 49 − 48 = 1 D=49-48=1 D = 49 − 48 = 1
x = − 7 ± 1 12 x=\frac{-7 \plusmn \sqrt1}{12} x = 12 − 7 ± 1
x 1 = − 0.5 x_1=-0.5 x 1 = − 0.5
x 2 = − 2 / 3 x_2=-2/3 x 2 = − 2/3
f " ( − 0.5 ) = 12 ( − 0.5 ) + 2 ( 3.5 ) = 1 > 0 f"(-0.5)=12(-0.5)+2(3.5)=1>0 f " ( − 0.5 ) = 12 ( − 0.5 ) + 2 ( 3.5 ) = 1 > 0
So it is minimum
f " ( − 2 / 3 ) = 12 ( − 2 / 3 ) + 2 ( 3.5 ) = − 1 < 0 f"(-2/3)=12(-2/3)+2(3.5)=-1<0 f " ( − 2/3 ) = 12 ( − 2/3 ) + 2 ( 3.5 ) = − 1 < 0
So it is maximum
If c=-3.5
f ′ ( x ) = 6 x 2 − 7 x + 2 = 0 f'(x)=6x^2-7x+2=0 f ′ ( x ) = 6 x 2 − 7 x + 2 = 0
D=49-48=1
x = 7 ± 1 12 x=\frac{7 \plusmn \sqrt1}{12} x = 12 7 ± 1
x 1 = 0.5 x_1=0.5 x 1 = 0.5
x 2 = 2 / 3 x_2=2/3 x 2 = 2/3
f " ( − 0.5 ) = 12 ( 0.5 ) + 2 ( 3.5 ) = 13 > 0 f"(-0.5)=12(0.5)+2(3.5)=13>0 f " ( − 0.5 ) = 12 ( 0.5 ) + 2 ( 3.5 ) = 13 > 0
So it is minimum
f"(2/3)=12(2/3)+2(3.5)=15>0
So it is minimum
Comments