f′(x)=6x2+2cx+2
f"(x)=12x+2c
f′(x)=0
6x2+2cx+2=0
D=4c2−48
x1=12−2c+4c2−48
x2=12−2c−4c2−48
12x(12−2c+4c2−48)+2c=0
−2c+4c2−48=−2c
4c2−48=1
c=49/4=±3.5
If c=3.5
f′(x)=6x2+7x+2=0
D=49−48=1
x=12−7±1
x1=−0.5
x2=−2/3
f"(−0.5)=12(−0.5)+2(3.5)=1>0
So it is minimum
f"(−2/3)=12(−2/3)+2(3.5)=−1<0
So it is maximum
If c=-3.5
f′(x)=6x2−7x+2=0
D=49-48=1
x=127±1
x1=0.5
x2=2/3
f"(−0.5)=12(0.5)+2(3.5)=13>0
So it is minimum
f"(2/3)=12(2/3)+2(3.5)=15>0
So it is minimum
Comments