Question #336019

For what values of c does the curve f(x)=2x^3+cx^2+2x have the minimum and maximum points


1
Expert's answer
2022-05-04T01:51:30-0400

f(x)=6x2+2cx+2f'(x)=6x^2+2cx+2

f"(x)=12x+2cf"(x)=12x+2c

f(x)=0f'(x)=0

6x2+2cx+2=06x^2+2cx+2=0

D=4c248D=4c^2-48

x1=2c+4c24812x_1=\frac{-2c+\sqrt{4c^2-48}}{12}

x2=2c4c24812x_2=\frac{-2c-\sqrt{4c^2-48}}{12}

12x(2c+4c24812)+2c=012x(\frac{-2c+\sqrt{4c^2-48}}{12})+2c=0

2c+4c248=2c-2c+\sqrt{4c^2-48}=-2c

4c248=14c^2-48=1

c=49/4=±3.5c=\sqrt{49/4}=\plusmn 3.5


If c=3.5

f(x)=6x2+7x+2=0f'(x)=6x^2+7x+2=0

D=4948=1D=49-48=1

x=7±112x=\frac{-7 \plusmn \sqrt1}{12}

x1=0.5x_1=-0.5

x2=2/3x_2=-2/3

f"(0.5)=12(0.5)+2(3.5)=1>0f"(-0.5)=12(-0.5)+2(3.5)=1>0

So it is minimum

f"(2/3)=12(2/3)+2(3.5)=1<0f"(-2/3)=12(-2/3)+2(3.5)=-1<0

So it is maximum


If c=-3.5

f(x)=6x27x+2=0f'(x)=6x^2-7x+2=0

D=49-48=1

x=7±112x=\frac{7 \plusmn \sqrt1}{12}

x1=0.5x_1=0.5

x2=2/3x_2=2/3

f"(0.5)=12(0.5)+2(3.5)=13>0f"(-0.5)=12(0.5)+2(3.5)=13>0

So it is minimum

f"(2/3)=12(2/3)+2(3.5)=15>0

So it is minimum


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS