Find the cylindrical coordinates of the points where the cartesian coordinates are i)(3,3,4) ii) (√5,1,2)
r2=x2+y2r^2=x^2+y^2r2=x2+y2
tanϕ=y/xtan \phi=y/xtanϕ=y/x
z=z
1. x=3, y=3, z=4
r=32+32=18r= \sqrt{3^2+3^2}= \sqrt{18}r=32+32=18
tanϕ=1tan \phi =1tanϕ=1
ϕ=π/4\phi =\pi/4ϕ=π/4
z=4
So, the cylindric coordinates are (18,π/4,4)\sqrt{18},\pi/4,4)18,π/4,4)
2. x=5x=\sqrt{5}x=5 ,y=1, z=2
r=52+12=6r=\sqrt{\sqrt{5}^2+1^2}=\sqrt6r=52+12=6
tanϕ=1/5tan\phi=1/\sqrt{5}tanϕ=1/5
ϕ=π/7.5\phi=\pi/7.5ϕ=π/7.5
z=2
So, the cylindric coordinates are (6,π/7.5,2)\sqrt6, \pi/7.5,2)6,π/7.5,2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment