Answer to Question #335777 in Calculus for Dhanush

Question #335777

Find the cylindrical coordinates of the points where the cartesian coordinates are i)(3,3,4) ii) (√5,1,2)


1
Expert's answer
2022-05-03T07:07:53-0400

r2=x2+y2r^2=x^2+y^2

tanϕ=y/xtan \phi=y/x

z=z

1. x=3, y=3, z=4

r=32+32=18r= \sqrt{3^2+3^2}= \sqrt{18}

tanϕ=1tan \phi =1

ϕ=π/4\phi =\pi/4

z=4

So, the cylindric coordinates are (18,π/4,4)\sqrt{18},\pi/4,4)

2. x=5x=\sqrt{5} ,y=1, z=2

r=52+12=6r=\sqrt{\sqrt{5}^2+1^2}=\sqrt6

tanϕ=1/5tan\phi=1/\sqrt{5}

ϕ=π/7.5\phi=\pi/7.5

z=2

So, the cylindric coordinates are (6,π/7.5,2)\sqrt6, \pi/7.5,2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment