If c>0, then the following equality holds,
the integral from a to b dx/x equals to the integral from ac to bc dx/x.
Show your work and an explanation for each step.
∫abdxx=∫acbcdxx\displaystyle\int_a^b \frac{dx}{x}=\int _{ac}^{bc}\frac{dx}{x}∫abxdx=∫acbcxdx ;
let's integrate the left and right parts of the equality:
ln∣x∣∣ab=ln∣x∣∣acbc\displaystyle\ln |x||_a^b =\displaystyle\ln |x||_{ac}^{bc}ln∣x∣∣ab=ln∣x∣∣acbc ;
ln∣b∣−ln∣a∣=ln∣bc∣−ln∣ac∣\displaystyle\ln |b|-\ln|a| =\displaystyle\ln |bc|-\ln|ac|ln∣b∣−ln∣a∣=ln∣bc∣−ln∣ac∣ ;
according to the property of the logarithm we can write the following formula:
ln∣ba∣=ln∣bcac∣\displaystyle\ln\left|\frac ba\right|=\ln\left|\frac{bc}{ac}\right|ln∣∣ab∣∣=ln∣∣acbc∣∣ ;
ln∣ba∣=ln∣ba∣\displaystyle\ln\left|\frac ba\right|=\ln\left|\frac ba\right|ln∣∣ab∣∣=ln∣∣ab∣∣ - the identity is proved.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments