∫ a b d x x = ∫ a c b c d x x \displaystyle\int_a^b \frac{dx}{x}=\int _{ac}^{bc}\frac{dx}{x} ∫ a b x d x = ∫ a c b c x d x ;
let's integrate the left and right parts of the equality:
ln ∣ x ∣ ∣ a b = ln ∣ x ∣ ∣ a c b c \displaystyle\ln |x||_a^b =\displaystyle\ln |x||_{ac}^{bc} ln ∣ x ∣ ∣ a b = ln ∣ x ∣ ∣ a c b c ;
ln ∣ b ∣ − ln ∣ a ∣ = ln ∣ b c ∣ − ln ∣ a c ∣ \displaystyle\ln |b|-\ln|a| =\displaystyle\ln |bc|-\ln|ac| ln ∣ b ∣ − ln ∣ a ∣ = ln ∣ b c ∣ − ln ∣ a c ∣ ;
according to the property of the logarithm we can write the following formula:
ln ∣ b a ∣ = ln ∣ b c a c ∣ \displaystyle\ln\left|\frac ba\right|=\ln\left|\frac{bc}{ac}\right| ln ∣ ∣ a b ∣ ∣ = ln ∣ ∣ a c b c ∣ ∣ ;
ln ∣ b a ∣ = ln ∣ b a ∣ \displaystyle\ln\left|\frac ba\right|=\ln\left|\frac ba\right| ln ∣ ∣ a b ∣ ∣ = ln ∣ ∣ a b ∣ ∣ - the identity is proved.
Comments