A stone is thrown vertically upward from the ground with an initial velocity of 40 ft/sec.
What is the height of the ball when its velocity is one-half the initial velocity?
v(t)=v0−gtx(t)=v0t−gt22v(t)=12v0⇒v0−gt=12v0⇒t=v02gx(t)=v0⋅v02g−gv028g2=3v028g=3⋅4028⋅32.174=18.6486ftv\left( t \right) =v_0-gt\\x\left( t \right) =v_0t-\frac{gt^2}{2}\\v\left( t \right) =\frac{1}{2}v_0\Rightarrow v_0-gt=\frac{1}{2}v_0\Rightarrow t=\frac{v_0}{2g}\\x\left( t \right) =v_0\cdot \frac{v_0}{2g}-\frac{{gv_0}^2}{8g^2}=\frac{3{v_0}^2}{8g}=\frac{3\cdot 40^2}{8\cdot 32.174}=18.6486ftv(t)=v0−gtx(t)=v0t−2gt2v(t)=21v0⇒v0−gt=21v0⇒t=2gv0x(t)=v0⋅2gv0−8g2gv02=8g3v02=8⋅32.1743⋅402=18.6486ft
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment