Question #330030

A cone of radius r centimetres and height h centimetres iss lowered first at a rate of 1 cm/s into a tall cylinder of radius R that is partially filled with water. How fast is the water level rising at the instant the cone is completely submerged?


1
Expert's answer
2022-04-19T02:36:30-0400

z(t)coordinateoftheconevertexz(0)=0z(t)=1y(t)thewaterlevely(0)=0πR2y(t)volumeofthecylinder13π(y(t)z(t))(y(t)z(t)hr)2volumeofthepartofconeinwaterπR2y(t)πr23h2(y(t)z(t))3=0Completelysubmerged:y(t)z(t)=hπR2yπr23h23(yz)(y(t)z(t))2=0πR2yπr2(y+1)=0y=r2R2r2z\left( t \right) -coordinate\,\,of\,\,the\,\,cone\,\,vertex\\z\left( 0 \right) =0\\z'\left( t \right) =-1\\y\left( t \right) \,\,-\,\,the\,\,water\,\,level\\y\left( 0 \right) =0\\\pi R^2y\left( t \right) \,\,-\,\,volume\,\,of\,\,the\,\,cylinder\\\frac{1}{3}\pi \left( y\left( t \right) -z\left( t \right) \right) \left( \frac{y\left( t \right) -z\left( t \right)}{h}r \right) ^2-volume\,\,of\,\,the\,\,part\,\,of\,\,cone\,\,in\,\,water\\\pi R^2y\left( t \right) -\frac{\pi r^2}{3h^2}\left( y\left( t \right) -z\left( t \right) \right) ^3=0\\Completely\,\,submerged:\\y\left( t \right) -z\left( t \right) =h\\\pi R^2y'-\frac{\pi r^2}{3h^2}3\left( y'-z' \right) \left( y\left( t \right) -z\left( t \right) \right) ^2=0\\\pi R^2y'-\pi r^2\left( y'+1 \right) =0\Rightarrow y'=\frac{r^2}{R^2-r^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS