9) Use your value of x to calculate a value for 𝑒𝑥 from the first four
terms.
X = 1
ex=∑k=0∞xkk!e^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}ex=∑k=0∞k!xk
First 4 terms:
ex≈1+x+x22+x36e^x\approx 1+x+\frac{x^2}{2}+\frac{x^3}{6}ex≈1+x+2x2+6x3
For x = 1:
e1=e≈1+1+12+16=166≈2.67e^1=e\approx1+1+\frac{1}{2}+\frac{1}{6}=\frac{16}{6}\approx2.67e1=e≈1+1+21+61=616≈2.67
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments