Question #330783

F(x) = \smallint (x+9)dx/(x2)(x+2)(x+9)dx / (x-2)(x+2)2 and F(3.1) = 5.5. Compute F( -0.5)


1
Expert's answer
2022-04-19T15:31:14-0400

Decomposition into the partial fraction:

x+9(x2)(x+2)2=Ax2+Bx+2+C(x+2)2\frac {x+9}{(x-2)(x+2)^2}=\frac {A}{x-2}+\frac{B}{x+2}+\frac{C}{(x+2)^2}

x+9=A(x+2)2+B(x2)(x+2)+C(x2)x+9=A(x+2)^2+B(x-2)(x+2)+C(x-2)

Equating coefficients, we get

A=1116A=\frac{11}{16} ; B=1116B=-\frac{11}{16} ; C=74C=-\frac{7}{4} .

F(x)=x+9(x2)(x+2)2dx=F(x)=\int \frac {x+9}{(x-2)(x+2)^2}dx=(1116(1x21x+2)741(x+2)2)dx=\int (\frac {11}{16}(\frac {1}{x-2}-\frac{1}{x+2})-\frac 74\frac{1}{(x+2)^2})dx=1116lnx2x+2+741x+2+C\frac{11}{16}\ln {|\frac{x-2}{x+2}|}+\frac74\frac {1}{x+2}+C

Let’s find C:

F(3.1)=1116ln3.123.1+2+7413.1+2+C=5.5F(3.1)= \frac{11}{16}\ln {|\frac{3.1-2}{3.1+2}|}+\frac74\frac {1}{3.1+2}+C=5.5

C6.21C\approx6.21

F(0.5)=1116ln0.520.5+2+7410.5+2+6.217.73F(-0.5)= \frac{11}{16}\ln {|\frac{-0.5-2}{-0.5+2}|}+\frac74\frac {1}{-0.5+2}+6.21\approx7.73



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS