Find the volume of an object enclosed by cylinders z = y2 +2, z = 4−y2 and planes x = −1 and x = 2.
Let's find the integration boundaries:
"-1\\le x\\le2" ;
to find the bounds for y equate "y^2 +2" and "4-y^2" :
"y^2+2=4-y^2"
"2y^2=2"
"y=\\pm1"
"-1\\le y\\le1"
"y^2+2\\le z\\le 4-y^2"
"\\displaystyle V=\\int_{-1}^2dx\\int_{-1}^1 dy\\int_{y^2+2}^{4-y^2}dz=""\\displaystyle \\int_{-1}^2dx\\int_{-1}^1 (4-y^2-(y^2+2))dy=""\\displaystyle \\int_{-1}^2dx\\int_{-1}^1 (2-2y^2)dy=""\\displaystyle \\int_{-1}^2dx (2y-\\frac23y^3)|_{-1}^1=\\displaystyle \\frac83\\int_{-1}^2dx =""\\displaystyle \\frac83(2-(-1))=8"
Answer: "V=8".
Comments
Leave a comment