find the surface area of the object obtained by rotating y=4+3x^2, 1<=x<=2 about the y axis
If the continuous curve is described by the function y = f(x), a ≤ x ≤ b, then the area is equal to integral
"A=2\\pi\\int_{a}^{b}{x\\sqrt{1+\\left(\\frac{dy}{dx}\\right)^2}dx}"
For given function
"A=2\\pi\\int_{1}^{2}{x\\sqrt{1+\\left(6x\\right)^2}dx}=\\frac{\\pi}{36}\\int_{1}^{2}{2\\left(6x\\right)\\sqrt{1+\\left(6x\\right)^2}d\\left(6x\\right)}"
Substitution t=6x:
"A=\\frac{\\pi}{36}\\int_{6}^{12}{2t\\sqrt{1+t^2}dt}"
Substitution u=t2:
"A=\\frac{\\pi}{36}\\int_{36}^{144}{\\sqrt{1+u}du}=\\frac{\\pi}{36}\\frac{2}{3}\\left(\\sqrt{1+u}\\right)^3\\left|\\begin{matrix}144\\\\36\\\\\\end{matrix}=\\frac{\\pi}{54}\\left(145\\sqrt{145}-37\\sqrt{37}\\right)\\right.=88.486"
Answer
A = 88.486
Comments
Leave a comment