If the continuous curve is described by the function y = f (x ), a ≤ x ≤ b , then the area is equal to integral
A = 2 π ∫ a b x 1 + ( d y d x ) 2 d x A=2\pi\int_{a}^{b}{x\sqrt{1+\left(\frac{dy}{dx}\right)^2}dx} A = 2 π ∫ a b x 1 + ( d x d y ) 2 d x
For given function
A = 2 π ∫ 1 2 x 1 + ( 6 x ) 2 d x = π 36 ∫ 1 2 2 ( 6 x ) 1 + ( 6 x ) 2 d ( 6 x ) A=2\pi\int_{1}^{2}{x\sqrt{1+\left(6x\right)^2}dx}=\frac{\pi}{36}\int_{1}^{2}{2\left(6x\right)\sqrt{1+\left(6x\right)^2}d\left(6x\right)} A = 2 π ∫ 1 2 x 1 + ( 6 x ) 2 d x = 36 π ∫ 1 2 2 ( 6 x ) 1 + ( 6 x ) 2 d ( 6 x )
Substitution t=6x:
A = π 36 ∫ 6 12 2 t 1 + t 2 d t A=\frac{\pi}{36}\int_{6}^{12}{2t\sqrt{1+t^2}dt} A = 36 π ∫ 6 12 2 t 1 + t 2 d t
Substitution u=t2 :
A = π 36 ∫ 36 144 1 + u d u = π 36 2 3 ( 1 + u ) 3 ∣ 144 36 = π 54 ( 145 145 − 37 37 ) = 88.486 A=\frac{\pi}{36}\int_{36}^{144}{\sqrt{1+u}du}=\frac{\pi}{36}\frac{2}{3}\left(\sqrt{1+u}\right)^3\left|\begin{matrix}144\\36\\\end{matrix}=\frac{\pi}{54}\left(145\sqrt{145}-37\sqrt{37}\right)\right.=88.486 A = 36 π ∫ 36 144 1 + u d u = 36 π 3 2 ( 1 + u ) 3 ∣ ∣ 144 36 = 54 π ( 145 145 − 37 37 ) = 88.486
Answer
A = 88.486
Comments