Decompose
(i)
(x^2+X+1)/(X+3)(x^2-x+1)
into partial fractions (show all the steps).
"\\frac{x^2+x+1}{(x+3)(x^2-x+1)}=" "\\frac{A}{x+3}+\\frac{Bx+C}{x^2-x+1}"
"x^2+x+1=A(x^2-x+1)+(Bx+C)(x+3)"
Equating coefficients, we get:
"1=A+B" (1)
"1=-A+3B+C" (2)
"1=A+3C" (3)
Substituting (1) into (2) gives
"1=-A+3(1-A)+C=-4A+C+3" (4)
Now let’s substitute (3) into (4)
"1=-4(1-3C)+C+3=13C-1"
"C=\\frac{2}{13}"
"A=1-3C=1-\\frac{6}{13}=\\frac{7}{13}"
"B=1-A=1-\\frac{7}{13}=\\frac{6}{13}"
"\\frac{x^2+x+1}{(x+3)(x^2-x+1)}=""\\frac{1}{13}\\frac{7}{x+3}+\\frac{1}{13}\\frac{6x+2}{x^2-x+1}"
Comments
Leave a comment