Question #325059

Using Greens theorm ..integration (3x+4y)dx+(2x-3y)dy for a circle




1
Expert's answer
2022-04-07T14:40:23-0400

ANSWER

Let

C={(x,y)R2:(xa)2+(yb)2=r2}C= \left \{ \left ( x,y \right )\in R^{2} :\left ( x-a \right )^{2}+\left ( y-b \right )^{2}=r^{2}\right \}

be a positively oriented circle and let

D={(x,y)R2:(xa)2+(yb)2r2}D= \left \{ \left ( x,y \right )\in R^{2} :\left ( x-a \right )^{2}+\left ( y-b \right )^{2}\leq r^{2}\right \} .

Since the partial derivatives of the functions L(x,y)=3x+4y,L(x,y)=3x+4y, M(x,y)=2x3yM(x,y)=2x-3y are continuous , then by Green's Theorem

C(Ldx+Mdy)=D(MxLy)dxdy\oint _{C}\left ( Ldx+Mdy \right )=\iint_{D} \left ( \frac{\partial M}{\partial x}-\frac{\partial L}{\partial y } \right )dxdy

C((3x+4y)dx+(2x3y)dy)=D(24)dxdy=2(areaofD)=2πr2\oint _{C}\left ( (3x+4y )dx+(2x-3y)dy \right )=\iint_{D} \left ( 2 -4 \right )dxdy=-2(area\: of \: D)=-2\pi r^{2}

(because (2x3y)x=2,(3x+4y)y=4,\frac{\partial(2x-3y) }{\partial x}=2, \: \: \frac{\partial(3x+4y) }{\partial y}=4, \: \: and the area of a circle DD is equal to πr2\pi r^{2} )


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS