Question #324833

Integrate :



(1/2*sin2x-cos^2x)/(sin^2x-cos^2x)

1
Expert's answer
2022-04-11T09:57:18-0400

The integral has the form: 12sin(2x)cos2xsin2xcos2xdx\int\frac{\frac12sin(2x)-cos^2x}{sin^2x-cos^2x}dx. In order to compute the integral we will use the substitution: z=tan(x)z=tan(x). Namely, we have: 12sin(2x)cos2xsin2xcos2xdx=sin(x)cos(x)cos2xsin2xcos2xdx=\int\frac{\frac12sin(2x)-cos^2x}{sin^2x-cos^2x}dx=\int\frac{sin(x)cos(x)-cos^2x}{sin^2x-cos^2x}dx=

=sin(x)cos(x)cos2xtan2x1d(tan(x))=\int\frac{sin(x)cos(x)-cos^2x}{tan^2x-1}d(tan(x)). Rewrite the numerator as: .sin(x)cos(x)cos2x=cos2x(tan(x)1)=tan(x)1tan2(x)+1sin(x)cos(x)-cos^2x=cos^2x(tan(x)-1)=\frac{tan(x)-1}{tan^2(x)+1}. Thus, after substitution z=tan(x)z=tan(x), we receive: 1(z+1)(z2+1)dz=12(1z+1+z+1z2+1)dz=12dzz+112zdzz2+1+12dzz2+1=12ln(z+1)14ln(z2+1)+12arctan(z)+C=12ln(tan(x)+1)14ln(tan2(x)+1)+x2+C\int\frac{1}{(z+1)(z^2+1)}dz=\frac12\int(\frac{1}{z+1}+\frac{-z+1}{z^2+1})dz=\frac12\int\frac{dz}{z+1}-\frac12\int\frac{z\,dz}{z^2+1}+\frac12\int\frac{dz}{z^2+1}=\frac12ln(z+1)-\frac14ln(z^2+1)+\frac12arctan(z)+C=\frac12ln(tan(x)+1)-\frac14ln(tan^2(x)+1)+\frac{x}{2}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS