The integral has the form: ∫sin2x−cos2x21sin(2x)−cos2xdx. In order to compute the integral we will use the substitution: z=tan(x). Namely, we have: ∫sin2x−cos2x21sin(2x)−cos2xdx=∫sin2x−cos2xsin(x)cos(x)−cos2xdx=
=∫tan2x−1sin(x)cos(x)−cos2xd(tan(x)). Rewrite the numerator as: .sin(x)cos(x)−cos2x=cos2x(tan(x)−1)=tan2(x)+1tan(x)−1. Thus, after substitution z=tan(x), we receive: ∫(z+1)(z2+1)1dz=21∫(z+11+z2+1−z+1)dz=21∫z+1dz−21∫z2+1zdz+21∫z2+1dz=21ln(z+1)−41ln(z2+1)+21arctan(z)+C=21ln(tan(x)+1)−41ln(tan2(x)+1)+2x+C
Comments