x 2 / 3 + y 2 / 3 = a 2 / 3 2 3 x − 1 / 3 d x + 2 3 y − 1 / 3 d y = 0 ⇒ d y d x = − y 1 / 3 x 1 / 3 T h e tan g e n t l i n e a t ( x 0 , y 0 ) : y − y 0 = − y 0 1 / 3 x 0 1 / 3 ( x − x 0 ) T h e i n t e r c e p t w i t h O x : y = 0 ⇒ x = x 0 + x 0 1 / 3 y 0 2 / 3 T h e i n t e r c e p t w i t h O y : x = 0 ⇒ y = y 0 + x 0 2 / 3 y 0 1 / 3 T h e d i s tan c e b e t w e e n ( x 0 + x 0 1 / 3 y 0 2 / 3 , 0 ) , ( 0 , y 0 + x 0 2 / 3 y 0 1 / 3 ) : d = ( x 0 + x 0 1 / 3 y 0 2 / 3 ) 2 + ( y 0 + x 0 2 / 3 y 0 1 / 3 ) 2 = = x 0 2 / 3 ( x 0 2 / 3 + y 0 2 / 3 ) 2 + y 0 2 / 3 ( x 0 2 / 3 + y 0 2 / 3 ) 2 = ( x 0 2 / 3 + y 0 2 / 3 ) 3 / 2 = a x^{2/3}+y^{2/3}=a^{2/3}\\\frac{2}{3}x^{-1/3}dx+\frac{2}{3}y^{-1/3}dy=0\Rightarrow \frac{dy}{dx}=-\frac{y^{1/3}}{x^{1/3}}\\The\,\,\tan gent\,\,line\,\,at\,\,\left( x_0,y_0 \right) :\\y-y_0=-\frac{{y_0}^{1/3}}{{x_0}^{1/3}}\left( x-x_0 \right) \\The\,\,intercept\,\,with\,\,Ox:\\y=0\Rightarrow x=x_0+{x_0}^{1/3}{y_0}^{2/3}\\The\,\,intercept\,\,with\,\,Oy:\\x=0\Rightarrow y=y_0+{x_0}^{2/3}{y_0}^{1/3}\\The\,\,dis\tan ce\,\,between\,\,\left( x_0+{x_0}^{1/3}{y_0}^{2/3},0 \right) ,\left( 0,y_0+{x_0}^{2/3}{y_0}^{1/3} \right) :\\d=\sqrt{\left( x_0+{x_0}^{1/3}{y_0}^{2/3} \right) ^2+\left( y_0+{x_0}^{2/3}{y_0}^{1/3} \right) ^2}=\\=\sqrt{{x_0}^{2/3}\left( {x_0}^{2/3}+{y_0}^{2/3} \right) ^2+{y_0}^{2/3}\left( {x_0}^{2/3}+{y_0}^{2/3} \right) ^2}=\left( {x_0}^{2/3}+{y_0}^{2/3} \right) ^{3/2}=a x 2/3 + y 2/3 = a 2/3 3 2 x − 1/3 d x + 3 2 y − 1/3 d y = 0 ⇒ d x d y = − x 1/3 y 1/3 T h e tan g e n t l in e a t ( x 0 , y 0 ) : y − y 0 = − x 0 1/3 y 0 1/3 ( x − x 0 ) T h e in t erce pt w i t h O x : y = 0 ⇒ x = x 0 + x 0 1/3 y 0 2/3 T h e in t erce pt w i t h O y : x = 0 ⇒ y = y 0 + x 0 2/3 y 0 1/3 T h e d i s tan ce b e tw ee n ( x 0 + x 0 1/3 y 0 2/3 , 0 ) , ( 0 , y 0 + x 0 2/3 y 0 1/3 ) : d = ( x 0 + x 0 1/3 y 0 2/3 ) 2 + ( y 0 + x 0 2/3 y 0 1/3 ) 2 = = x 0 2/3 ( x 0 2/3 + y 0 2/3 ) 2 + y 0 2/3 ( x 0 2/3 + y 0 2/3 ) 2 = ( x 0 2/3 + y 0 2/3 ) 3/2 = a
Comments