x2/3+y2/3=a2/332x−1/3dx+32y−1/3dy=0⇒dxdy=−x1/3y1/3Thetangentlineat(x0,y0):y−y0=−x01/3y01/3(x−x0)TheinterceptwithOx:y=0⇒x=x0+x01/3y02/3TheinterceptwithOy:x=0⇒y=y0+x02/3y01/3Thedistancebetween(x0+x01/3y02/3,0),(0,y0+x02/3y01/3):d=(x0+x01/3y02/3)2+(y0+x02/3y01/3)2==x02/3(x02/3+y02/3)2+y02/3(x02/3+y02/3)2=(x02/3+y02/3)3/2=a
Comments