Show that the length of the portion of any tangent line to the asteroid aπ₯^2/3 + π¦^2/3 = π^2/3 ,cut off by the coordinate axes is constant.
"x^{2\/3}+y^{2\/3}=a^{2\/3}\\\\\\frac{2}{3}x^{-1\/3}dx+\\frac{2}{3}y^{-1\/3}dy=0\\Rightarrow \\frac{dy}{dx}=-\\frac{y^{1\/3}}{x^{1\/3}}\\\\The\\,\\,\\tan gent\\,\\,line\\,\\,at\\,\\,\\left( x_0,y_0 \\right) :\\\\y-y_0=-\\frac{{y_0}^{1\/3}}{{x_0}^{1\/3}}\\left( x-x_0 \\right) \\\\The\\,\\,intercept\\,\\,with\\,\\,Ox:\\\\y=0\\Rightarrow x=x_0+{x_0}^{1\/3}{y_0}^{2\/3}\\\\The\\,\\,intercept\\,\\,with\\,\\,Oy:\\\\x=0\\Rightarrow y=y_0+{x_0}^{2\/3}{y_0}^{1\/3}\\\\The\\,\\,dis\\tan ce\\,\\,between\\,\\,\\left( x_0+{x_0}^{1\/3}{y_0}^{2\/3},0 \\right) ,\\left( 0,y_0+{x_0}^{2\/3}{y_0}^{1\/3} \\right) :\\\\d=\\sqrt{\\left( x_0+{x_0}^{1\/3}{y_0}^{2\/3} \\right) ^2+\\left( y_0+{x_0}^{2\/3}{y_0}^{1\/3} \\right) ^2}=\\\\=\\sqrt{{x_0}^{2\/3}\\left( {x_0}^{2\/3}+{y_0}^{2\/3} \\right) ^2+{y_0}^{2\/3}\\left( {x_0}^{2\/3}+{y_0}^{2\/3} \\right) ^2}=\\left( {x_0}^{2\/3}+{y_0}^{2\/3} \\right) ^{3\/2}=a"
Comments
Leave a comment