Suppose π is odd and differentiable everywhere. Prove that for every positive
number π, there exists a number π in (βπ, π) such that π β²(π) = π(π)/π.
"Since\\,\\,f\\,\\,is\\,\\,odd, f\\left( -b \\right) =-f\\left( b \\right) \\\\By\\,\\,Lagrange\u0091s\\,\\,theorem\\\\\\frac{f\\left( b \\right) -f\\left( -b \\right)}{b-\\left( -b \\right)}=f'\\left( c \\right) ,c\\in \\left( -b,b \\right) \\\\\\frac{2f\\left( b \\right)}{2b}=f'\\left( c \\right) \\Rightarrow f'\\left( c \\right) =\\frac{f\\left( b \\right)}{b}"
Comments
Leave a comment