Suppose π is odd and differentiable everywhere. Prove that for every positive
number π, there exists a number π in (βπ, π) such that π β²(π) = π(π)/π.
Sinceββfββisββodd,f(βb)=βf(b)ByββLagrangeΒsββtheoremf(b)βf(βb)bβ(βb)=fβ²(c),cβ(βb,b)2f(b)2b=fβ²(c)βfβ²(c)=f(b)bSince\,\,f\,\,is\,\,odd, f\left( -b \right) =-f\left( b \right) \\By\,\,LagrangeΒs\,\,theorem\\\frac{f\left( b \right) -f\left( -b \right)}{b-\left( -b \right)}=f'\left( c \right) ,c\in \left( -b,b \right) \\\frac{2f\left( b \right)}{2b}=f'\left( c \right) \Rightarrow f'\left( c \right) =\frac{f\left( b \right)}{b}Sincefisodd,f(βb)=βf(b)ByLagrangeΒstheorembβ(βb)f(b)βf(βb)β=fβ²(c),cβ(βb,b)2b2f(b)β=fβ²(c)βfβ²(c)=bf(b)β
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment