Obtain the Fourier series for the following periodic function which has a period of 2π: f(x)=x for−π≤x≤π
"f(x)=x,[-\\pi,\\pi]"
The function f(x) is not even, so a0=0, an=0.
The numbers a0, an and bn (n=1,2,...) are called the Fourier coefficients of the function f.
The Fourier series of the function f(x) on the interval (0;T) in terms of the sines of multiple arcs is called the series:
"f(x)=\\sum b_n*sin(\\frac{\\pi*n*x}{T})"
"b_n=\\frac{2}{T}\\displaystyle\\int_0^Tf(x)*sin(\\frac{\\pi*n*x}{T})dx"
For our data:
"b_n=\\frac{2}{\\pi}\\displaystyle\\int_0^\\pi f(x)*sin(\\frac{\\pi*n*x}{\\pi})dx=\\frac{2}{\\pi}\\displaystyle\\int_0^\\pi x*sin(n*x)dx="
"\\frac{2}{\\pi}(-\\pi*\\frac{cos(\\pi*n)}{n}+\\frac{sin(\\pi*n)}{n^2}-0)=-2*\\frac{(-1)^n}{n}"
Finally
"f(x)=0.0+\\sum(-2*\\frac{(-1)^n}{n})*sin(n*x)"
Comments
Leave a comment