f(x)=x,[−π,π]
The function f(x) is not even, so a0=0, an=0.
The numbers a0, an and bn (n=1,2,...) are called the Fourier coefficients of the function f.
The Fourier series of the function f(x) on the interval (0;T) in terms of the sines of multiple arcs is called the series:
f(x)=∑bn∗sin(Tπ∗n∗x)
bn=T2∫0Tf(x)∗sin(Tπ∗n∗x)dx
For our data:
bn=π2∫0πf(x)∗sin(ππ∗n∗x)dx=π2∫0πx∗sin(n∗x)dx=
π2(−π∗ncos(π∗n)+n2sin(π∗n)−0)=−2∗n(−1)n
Finally
f(x)=0.0+∑(−2∗n(−1)n)∗sin(n∗x)
Comments