Question #320570

Obtain the Fourier series for the following periodic function which has a period of 2π: f(x)=x for−π≤x≤π

1
Expert's answer
2022-04-01T13:41:52-0400

f(x)=x,[π,π]f(x)=x,[-\pi,\pi]

The function f(x) is not even, so a0=0, an=0.

The numbers a0, an and bn (n=1,2,...) are called the Fourier coefficients of the function f.

The Fourier series of the function f(x) on the interval (0;T) in terms of the sines of multiple arcs is called the series:

f(x)=bnsin(πnxT)f(x)=\sum b_n*sin(\frac{\pi*n*x}{T})

bn=2T0Tf(x)sin(πnxT)dxb_n=\frac{2}{T}\displaystyle\int_0^Tf(x)*sin(\frac{\pi*n*x}{T})dx

For our data:

bn=2π0πf(x)sin(πnxπ)dx=2π0πxsin(nx)dx=b_n=\frac{2}{\pi}\displaystyle\int_0^\pi f(x)*sin(\frac{\pi*n*x}{\pi})dx=\frac{2}{\pi}\displaystyle\int_0^\pi x*sin(n*x)dx=

2π(πcos(πn)n+sin(πn)n20)=2(1)nn\frac{2}{\pi}(-\pi*\frac{cos(\pi*n)}{n}+\frac{sin(\pi*n)}{n^2}-0)=-2*\frac{(-1)^n}{n}

Finally

f(x)=0.0+(2(1)nn)sin(nx)f(x)=0.0+\sum(-2*\frac{(-1)^n}{n})*sin(n*x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS