a ladder 20 feet long leans against a vertical building is the tower of the ladder slides down at a rate of p3 fits how fast is the bottom of the ladder sliding away from the building in the top of the ladder is 10 feet above the ground
y−height above the groundx−distance of the bottom to the wallx=202−y2dydt=−3dxdt=12202−y2⋅(−2y)dydt=−y400−y2⋅(−3)==3⋅10400−102=1.73205 y-height\,\,above\,\,the\,\,ground\\x-dis\tan ce\,\,of\,\,the\,\,bottom\,\,to\,\,the\,\,wall\\x=\sqrt{20^2-y^2}\\\frac{dy}{dt}=-3\\\frac{dx}{dt}=\frac{1}{2\sqrt{20^2-y^2}}\cdot \left( -2y \right) \frac{dy}{dt}=-\frac{y}{\sqrt{400-y^2}}\cdot \left( -3 \right) =\\=\frac{3\cdot 10}{\sqrt{400-10^2}}=1.73205\,\,y−heightabovethegroundx−distanceofthebottomtothewallx=202−y2dtdy=−3dtdx=2202−y21⋅(−2y)dtdy=−400−y2y⋅(−3)==400−1023⋅10=1.73205
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment