Differentiate the function π(π₯) = (3π₯ + 1) 4 (2π₯ β 1) 5 and simplify your answer
"f(x)=(3x+1)\u2074(2x-1)\u2075"
Let "u=(3x+1)\u2074 =>\\frac{du}{dx}=12(3x+1)\u00b3"
"v=(2x-1)\u2075=>\\frac{dv}{dx}=10(2x-1)\u2074"
"f'(x)=v\\frac{du}{dx}+u\\frac{dv}{dx}"
"f'(x)=(2x-1)\u2075\u202212(3x+1)\u00b3+(3x+1)\u2074\u202210(2x-1)\u2074"
"f'(x)=2(2x-1)\u2074(3x+1)\u00b3[6(2x-1)+5(3x+1)]"
"f'(x)=2(2x-1)\u2074(3x+1)\u00b3[12x-6+15x+5]"
"f'(x)=2(2x-1)\u2074(3x+1)\u00b3[27x-1]"
Comments
Leave a comment